Modified Proof of a Local Analogue of the Grothendieck Conjecture

نویسندگان

  • Victor Abrashkin
  • VICTOR ABRASHKIN
چکیده

A local analogue of the Grothendieck Conjecture is an equivalence of the category of complete discrete valuation fields K with finite residue fields of characteristic p 6= 0 and the category of absolute Galois groups of fields K together with their ramification filtrations. The case of characteristic 0 fields K was considered by Mochizuki several years ago. Then the author proved it by different method if p > 2 (but char K = 0 or p). This paper represents a modified approach: it covers the case p = 2, contains considerable technical simplifications and replaces the Galois group of K by its maximal pro-p-quotient. Special attention is paid to the procedure of recovering field isomorphisms coming from isomorphisms of Galois groups, which are compatible with corresponding ramification filtrations. Résumé. Un analogue local de la conjecture de Grothendieck est une équivalence entre la catégorie des corps K complets pour une valuation discrète à corps résiduels finis de caractéristique p 6= 0, et la catégorie des groupes galoisiens absolus de corps K munis de la filtration de ramification. Le cas des corps de caractéristique 0 a été considéré par Mochizuki il y a quelques années. Par la suite, le présent auteur a demontré l’équivalence par une méthode différente si p > 2 (mais char K = 0 or p). Dans l’article présenté ici, une modification de l’approche précédente est envisagée: elle couvre le cas p = 2, contient des simplifications considérables et remplace le group galoisien absolu de K par son pro-p-quotient maximal. Une attention particulière est accordeé au procédé de reconstruction d’isomorphisme de corps obtenu a partir d’isomorphisme de groupes du Galois qui sont compatibles avec les filtrations de ramification correspondantes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analogue of the Field-of-norms Functor and the Grothendieck Conjecture

The paper contains a construction of an analogue of the Fontaine-Wintenberger field-of-norms functor for higher dimensional local fields. This construction is done completely in terms of the ramification theory of such fields. It is applied to deduce the mixed characteristic case of a local analogue of the Grothendieck Conjecture for these fields from its characteristic p case, which was proved...

متن کامل

An Analogue of the Field-of-norms Functor and of the Grothendieck Conjecture

The paper contains a construction of an analogue of the Fontaine-Wintenberger field-of-norms functor for higher dimensional local fields. This construction is done completely in terms of the ramification theory of such fields. It is applied to deduce the mixed characteristic case of a local analogue of the Grothendieck Conjecture for these fields from its characteristic p case, which was proved...

متن کامل

Towards explicit description of ramification filtration in the 2-dimensional case

The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order ≥ 3. This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol. 241, 2003, pp. 2-34.

متن کامل

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007