Compact Quantum Metric Spaces and Ergodic Actions of Compact Quantum Groups

نویسنده

  • HANFENG LI
چکیده

We show that for any co-amenable compact quantum group A = C(G) there exists a unique compact Hausdorff topology on the set EA(G) of isomorphism classes of ergodic actions of G such that the following holds: for any continuous field of ergodic actions of G over a locally compact Hausdorff space T the map T → EA(G) sending each t in T to the isomorphism class of the fibre at t is continuous if and only if the function counting the multiplicity of γ in each fibre is continuous over T for every equivalence class γ of irreducible unitary representations of G. Generalizations for arbitrary compact quantum groups are also obtained. In the case G is a compact group, the restriction of this topology on the subset of isomorphism classes of ergodic actions of full multiplicity coincides with the topology coming from the work of Landstad and Wassermann. Podleś spheres are shown to be continuous in the natural parameter as ergodic actions of the quantum SU(2) group. We also introduce a notion of regularity for quantum metrics on G, and show how to construct a quantum metric from any ergodic action of G, starting from a regular quantum metric on G. Furthermore, we introduce a quantum Gromov-Hausdorff distance between ergodic actions of G when G is separable and show that it induces the above topology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Actions of Universal Quantum Groups on Operator Algebras

We construct ergodic actions of compact quantum groups on C∗-algebras and von Neumann algebras, and exhibit phenomena of such actions that are of different nature from ergodic actions of compact groups. In particular, we construct: (1). an ergodic action of the compact quantum Au(Q) on the type IIIλ Powers factor Rλ for an appropriate positive Q ∈ GL(2, R); (2). an ergodic action of the compact...

متن کامل

Order-unit Quantum Gromov-hausdorff Distance

We introduce a new distance distoq between compact quantum metric spaces. We show that distoq is Lipschitz equivalent to Rieffel’s distance distq, and give criteria for when a parameterized family of compact quantum metric spaces is continuous with respect to distoq. As applications, we show that the continuity of a parameterized family of quantum metric spaces induced by ergodic actions of a f...

متن کامل

Quantum isometry group of a compact metric space

We give a definition of isometric action of a compact quantum group on a compact metric space, generalizing the definition given by Banica for finite metric spaces, and prove the existence of the universal object in the category of compact quantum groups acting isometrically on a given compact metric space.

متن کامل

On Ergodic Properties of Convolution Operators Associated with Compact Quantum Groups

Recent results of M. Junge and Q.Xu on the ergodic properties of the averages of kernels in noncommutative L-spaces are applied to the analysis of the almost uniform convergence of operators induced by the convolutions on compact quantum groups. The classical ergodic theory was initially concerned with investigating the limits of iterations (or iterated averages) of certain transformations of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005