Defining Relations and the Algebraic Structure of the Group SL2 over Integral Hamilton Quaternions

نویسندگان

  • Sergei I. Adian
  • I. G. Lysionok
  • J. G. Mennicke
چکیده

In the present paper, we study the group SL 2 (H Z) of (2 2)-matrices with reduced norm 1 over the noncommutative ring of Hamilton quaternions with integral coeecients. In section 1, we obtain a presentation for SL 2 (H Z) in terms of generators and deening relations. In section 2, we exhibit a subgroup of nite index of SL 2 (H Z) with a nonabelian free quotient of rank 3. It is well known that the group SL 2 (Z) has the same property. In fact, the commutator subgroup of SL 2 (Z) is a free group of rank 2 and has index 12. The normal subgroup generated in SL 2 (Z) by the element 1 m 0 1 ! (1) coincides with SL 2 (Z) if m = 1, is of nite index if 1 < m 5 and has innnite index otherwise. In SL 2 (H Z), the normal closure of the element (1) also coincides with the whole group if m = 1. But the normal closure of (1) in SL 2 (H Z) turns out to be of innnite index if m = 2. We have tried to keep the exposition of the paper as elementary as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of higher index DAEs using their IAE's structure: Trajectory-prescribed path control problem and simple pendulum

In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...

متن کامل

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.

متن کامل

Generators and Relations of the Affine Coordinate Rings of Connected Semisimple Algebraic Groups

Let G be a connected semisimple algebraic group over an algebraically closed field of characteristic zero. A canonical presentation by generators and relations of the algebra of regular functions on G is found. The conjectures of D.Flath and J.Towber, [FT], are proved. (1) Let G be a connected semisimple algebraic group over an algebraically closed field k of characteristic zero. We obtain here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997