Approximate Nash Equilibria in Partially Observed Stochastic Games with Mean-Field Interactions

نویسندگان

  • Naci Saldi
  • Tamer Basar
  • Maxim Raginsky
چکیده

Establishing the existence of Nash equilibria for partially observed stochastic dynamic games is known to be quite challenging, with the difficulties stemming from the noisy nature of the measurements available to individual players (agents) and the decentralized nature of this information. When the number of players is sufficiently large and the interactions among agents is of the mean-field type, one way to overcome this challenge is to investigate the infinite-population limit of the problem, which leads to a mean-field game. In this paper, we consider discrete-time partially observed mean-field games with infinite-horizon discounted cost criteria. Using the technique of converting the original partially observed stochastic control problem to a fully observed one on the belief space and the dynamic programming principle, we establish the existence of Nash equilibria for these game models under very mild technical conditions. Then, we show that the mean-field equilibrium policy, when adopted by each agent, forms an approximate Nash equilibrium for games with sufficiently many agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general characterization of the mean field limit for stochastic differential games

The mean field limit of large-population symmetric stochastic differential games is derived in a general setting, with and without common noise, on a finite time horizon. Minimal assumptions are imposed on equilibrium strategies, which may be asymmetric and based on full information. It is shown that approximateNash equilibria in the n-player games admit certain weak limits as n tends to infini...

متن کامل

Stochastic Learning of Equilibria in Games: The Ordinary Differential Equation Method

Our purpose is to discuss stochastic algorithms to learn equilibria in games, and their time of convergence. To do so, we consider a general class of stochastic algorithms that converge weakly (in the sense of weak convergence for stochastic processes) towards solutions of particular ordinary differential equations, corresponding to their mean-field approximations. Tuning parameters in these al...

متن کامل

Learning with Partial Observations in General-sum Stochastic Games

In many situations, multiagent systems must deal with partial observability that agents have in the environment. In these cases, finding optimal solutions is often intractable for more than two agents and approximated solutions are often the only way to solve these problems. The models known to represent this kind of problem is Partially Observable Stochastic Game (POSG). Such a model is usuall...

متن کامل

Approximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games ∗

We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial re...

متن کامل

Computing Approximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games

We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.02036  شماره 

صفحات  -

تاریخ انتشار 2017