Alternating evolution discontinuous Galerkin methods for Hamilton-Jacobi equations

نویسندگان

  • Hailiang Liu
  • Michael Pollack
چکیده

In this work, we propose a high resolution Alternating Evolution Discontinuous Galerkin (AEDG) method to solve Hamilton-Jacobi equations. The construction of the AEDG method is based on an alternating evolution system of the Hamilton-Jacobi equation, following the previous work [H. Liu, M. Pollack and H. Saran, SIAM J. Sci. Comput. 35(1), (2013) 122–149] on AE schemes for Hamilton-Jacobi equations. A semi-discrete AEDG scheme derives directly from a sampling of this system on alternating grids. Higher order accuracy is achieved by a combination of high-order polynomial approximation near each grid and a time discretization with matching accuracy. The AEDG methods have the advantage of easy formulation and implementation, and efficient computation of the solution. For the linear equation, we prove the L2 stability of the method. Numerical experiments for a set of Hamilton-Jacobi equations are presented to demonstrate both accuracy and capacity of these AEDG schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations

In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin methods were originally introduced for hyperbolic conservation laws. They combine the central scheme and the discontinuous Galerkin method and therefore carry many features of both methods. Since Hamilton-Jacobi equations in general...

متن کامل

A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations

In this paper, we propose a new discontinuous Galerkin finite element method to solve the Hamilton–Jacobi equations. Unlike the discontinuous Galerkin method of [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666–690.] which applies the discontinuous Galerkin framework on the conservation law system ...

متن کامل

A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations

In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...

متن کامل

Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations

In this note, we reinterpret a discontinuous Galerkin method originally developed by Huand Shu [1] (see also [2]) for solving Hamilton-Jacobi equations. By this reinterpretation,numerical solutions will automatically satisfy the curl-free property of the exact solutionsinside each element. This new reinterpretation allows a method of lines formulation, whichrenders a more na...

متن کامل

A New Discontinuous Galerkin Method for Hamilton-Jacobi Equations

In this paper we propose a new local discontinuous Galerkin method to directly solve Hamilton-Jacobi equations. The scheme is a natural extension of the monotone scheme. For the linear case, the method is equivalent to the discontinuous Galerkin method for conservation laws. Thus, stability and error analysis are obtained under the framework of conservation laws. For both convex and nonconvex H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 258  شماره 

صفحات  -

تاریخ انتشار 2014