Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats.

نویسندگان

  • P Y Chen
  • P W Sanders
چکیده

Nitric oxide is a potent endogenous vasodilator that regulates arterial tone. A family of nitric oxide synthases uses L-arginine and L-homoarginine stereospecifically as substrates for nitric oxide production in vivo. By preventing expression of inducible but not constitutive nitric oxide synthases, glucocorticoids differentiate which enzyme in this family is the predominant source of nitric oxide generation in a given situation. We proposed that defective production of nitric oxide produces salt-sensitive hypertension in the Dahl/Rapp rat. Plasma concentrations of L-arginine, citrulline, and ornithine of salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) rats on 8% sodium chloride chow for 1 week did not differ. However, intravenous infusion of L-arginine and L-homoarginine, but not D-arginine, increased urinary excretion of nitrate, the degradation product of nitric oxide, and simultaneously lowered blood pressure in hypertensive SS/Jr rats. Oral L-arginine also prevented development of hypertension and increased urinary excretion of cyclic GMP and nitrate in these rats. Dexamethasone, in a dose that prevented hypotension from parenteral injection of lipopolysaccharide, completely prevented the increase in excretion of cyclic GMP and nitrate, and hypertension resulted despite concomitant treatment with L-arginine. These studies supported an important role of dexamethasone-suppressible nitric oxide synthesis in the prevention of salt-sensitive hypertension in the Dahl/Rapp rat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular smooth muscle nitric oxide synthase anomalies in Dahl/Rapp salt-sensitive rats.

Salt-sensitive hypertension in the Dahl/Rapp rat (S strain) is prevented by L-arginine. Based on the observations that dexamethasone prevented the antihypertensive effect of L-arginine in these animals and the suggestion that a locus in or near an inducible nitric oxide synthase (NOS) gene on chromosome 10 cosegregated with hypertension in some F2 crosses that utilized the S rat, the present st...

متن کامل

Polymorphism in Nos2 gene is absent in Prague colony of Dahl/Rapp salt-sensitive and salt-resistant rats.

We have searched for polymorphism of inducible nitric oxide synthase gene (Nos2 gene) in the Prague colony of salt-sensitive and salt-resistant Dahl/Rapp rats. Specific primers were used to confirm previously described Nos2 gene polymorphism because this gene was suggested to be a potential candidate gene for genetic hypertension. Phenotyping (blood pressure, organ weight, plasma lipids) have c...

متن کامل

L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats.

This study examined the contribution of nitric oxide (NO) to the susceptibility or resistance to the hypertensive effects of high sodium chloride (8.0% NaCl) intake in young Dahl/Rapp salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) rats. Using NG-monomethyl-L-arginine (L-NMMA) as a probe for NO production in vivo, we found that increasing dietary sodium chloride increased NO activity in salt-...

متن کامل

Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats.

A role for reduced renal nitric oxide production has been proposed as a mechanism responsible for hypertension in Dahl "salt-sensitive" rats. The present study had 2 goals: first, to determine the relationship between changes in mean arterial pressure and renal cortical and medullary blood flows in unanesthetized Dahl/Rapp salt-sensitive (S) and Dahl/Rapp salt-resistant (R) rats as daily salt i...

متن کامل

Nitric oxide synthase (NOS2) mutation in Dahl/Rapp rats decreases enzyme stability.

The pathogenesis of salt-sensitive hypertension remains poorly defined, but a role for nitric oxide (NO) has been suggested. The Dahl/Rapp salt-sensitive rat possesses a defect in NO synthesis that is overcome by supplementation with L-arginine, which increases NO and cGMP production and prevents salt-sensitive hypertension. An S714P mutation of inducible NO synthase (NOS2) was subsequently ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 1993