Solid-State Kinetic Investigations of Nonisothermal Reduction of Iron Species Supported on SBA-15

نویسندگان

  • N S Genz
  • D Baabe
  • T Ressler
چکیده

Iron oxide catalysts supported on nanostructured silica SBA-15 were synthesized with various iron loadings using two different precursors. Structural characterization of the as-prepared Fe x O y /SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, DR-UV-Vis spectroscopy, and Mössbauer spectroscopy. An increasing size of the resulting iron species correlated with an increasing iron loading. Significantly smaller iron species were obtained from (Fe(III), NH4)-citrate precursors compared to Fe(III)-nitrate precursors. Moreover, smaller iron species resulted in a smoother surface of the support material. Temperature-programmed reduction (TPR) of the Fe x O y /SBA-15 samples with H2 revealed better reducibility of the samples originating from Fe(III)-nitrate precursors. Varying the iron loading led to a change in reduction mechanism. TPR traces were analyzed by model-independent Kissinger method, Ozawa, Flynn, and Wall (OFW) method, and model-dependent Coats-Redfern method. JMAK kinetic analysis afforded a one-dimensional reduction process for the Fe x O y /SBA-15 samples. The Kissinger method yielded the lowest apparent activation energy for the lowest loaded citrate sample (Ea ≈ 39 kJ/mol). Conversely, the lowest loaded nitrate sample possessed the highest apparent activation energy (Ea ≈ 88 kJ/mol). For samples obtained from Fe(III)-nitrate precursors, Ea decreased with increasing iron loading. Apparent activation energies from model-independent analysis methods agreed well with those from model-dependent methods. Nucleation as rate-determining step in the reduction of the iron oxide species was consistent with the Mampel solid-state reaction model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of aluminum on the nature of the iron species in Fe-SBA-15.

We report the preparation of highly ordered mesoporous Fe-Al-SBA-15 with isolated extraframework Fe species under acidic conditions. The materials were characterized by means of UV resonance Raman spectroscopy, in conjunction with BET, XRD, TEM, UV-vis, H2-TPR, FT-IR, and 27Al MAS NMR spectroscopy. The addition of both Fe and Al to the synthesis gel of SBA-15 results in the formation of isolate...

متن کامل

Synthesis, characterization, and catalytic performance of single-site iron(III) centers on the surface of SBA-15 silica.

A new molecular precursor strategy has been used to prepare a series of single-site catalysts that possess isolated iron centers supported on mesoporous SBA-15 silica. The iron centers were introduced via grafting reactions of the tris(tert-butoxy)siloxy iron(III) complex Fe[OSi(O(t)Bu)(3)](3)(THF) with SBA-15 in dry hexane. This complex reacts cleanly with the hydroxyl groups of SBA-15 to elim...

متن کامل

Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1.

We have used scaling kinetics and the concept of kinetic competence to elucidate the role of hemeproteins OmcA and MtrC in iron reduction by Shewanella oneidensis MR-1. Second-order rate constants for OmcA and MtrC were determined by single-turnover experiments. For soluble iron species, a stopped-flow apparatus was used, and for the less reactive iron oxide goethite, a conventional spectrophot...

متن کامل

Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

Special preparation of Santa Barbara Amorphous (SBA)-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO₂. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. ...

متن کامل

ZnO polythiophene SBA-15 nanoparticles as a solid-phase microextraction fiber for fast determination essential oils of Matricaria chamomilla

The objective of this study is determination the volatile compounds of Matricaria chamomilla of an inorganic–organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica (ZnO/PT/SBA-15) as a solid-phase fiber microextraction (SPME). Microextraction techniques with nanoparticles ZnO/PT/SBA-15 resulted in a more efficient analyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017