A Quantum Annealing Approach to Biclustering
نویسندگان
چکیده
Several problem in Artificial Intelligence and Pattern Recognition are computationally intractable due to their inherent complexity and the exponential size of the solution space. One example of such problems is biclustering, a specific clustering problem where rows and columns of a data-matrix must be clustered simultaneously. Quantum information processing could provide a viable alternative to combat such a complexity. A notable work in this direction is the recent development of the D-Wave computer, whose processor is able to exploit quantum mechanical effects in order to perform quantum annealing. The question motivating this work is whether the use of this special hardware is a viable approach to efficiently solve the biclustering problem. As a first step towards the solution of this problem, we show a feasible encoding of biclustering into the D-Wave quantum annealing hardware, and provide a theoretical analysis of its correctness.
منابع مشابه
Extraction of Web Usage Profiles using Simulated Annealing Based Biclustering Approach
In this paper, the Simulated Annealing (SA) based biclustering approach is proposed in which SA is used as an optimization tool for biclustering of web usage data to identify the optimal user profile from the given web usage data. Extracted biclusters are consists of correlated users whose usage behaviors are similar across the subset of web pages of a web site where as these users are uncorrel...
متن کاملHybrid Swarm Intelligence- Based Biclustering Approach for Recommendation of Web Pages
This chapter focuses on recommender systems based on the coherent user’s browsing patterns. Biclustering approach is used to discover the aggregate usage profiles from the preprocessed Web data. A combination of Discrete Artificial Bees Colony Optimization and Simulated Annealing technique is used for optimizing the aggregate usage profiles from the preprocessed clickstream data. Web page recom...
متن کاملInformation Bottleneck Co-clustering
Co-clustering has emerged as an important approach for mining contingency data matrices. We present a novel approach to co-clustering based on the Information Bottleneck principle, called Information Bottleneck Co-clustering (IBCC), which supports both soft-partition and hardpartition co-clusterings, and leverages an annealing-style strategy to bypass local optima. Existing co-clustering method...
متن کاملDeterministic Annealing Framework in MMMs-Induced Fuzzy Co-Clustering and Its Applicability
Initialization problem is a significant issue in FCM-type clustering models, in which alternative optimization is often started with random initial partitions and can be trapped into local optima caused by bad initialization. The deterministic clustering approach is a practical procedure for utilizing a robust feature of very fuzzy partitions and tries to converge the iterative FCM process to a...
متن کاملA Quantum Approach to Classical Statistical Mechanics
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to deal with standard optimization methods, such as simulated and quantum annealing, on an equal basis. Consequently, we extend the quantum annealing ...
متن کامل