Cerebrovascular and ventilatory responses to acute isocapnic hypoxia in healthy aging and lung disease: effect of vitamin C.

نویسندگان

  • Sara E Hartmann
  • Xavier Waltz
  • Christine K Kissel
  • Lian Szabo
  • Brandie L Walker
  • Richard Leigh
  • Todd J Anderson
  • Marc J Poulin
چکیده

Acute hypoxia increases cerebral blood flow (CBF) and ventilation (V̇e). It is unknown if these responses are impacted with normal aging, or in patients with enhanced oxidative stress, such as (COPD). The purpose of the study was to 1) investigate the effects of aging and COPD on the cerebrovascular and ventilatory responses to acute hypoxia, and 2) to assess the effect of vitamin C on these responses during hypoxia. In 12 Younger, 14 Older, and 12 COPD, we measured peak cerebral blood flow velocity (V̄p; index of CBF), and V̇e during two 5-min periods of acute isocapnic hypoxia, under conditions of 1) saline-sham; and 2) intravenous vitamin C. Antioxidants [vitamin C, superoxide dismutase (SOD), glutathione peroxidase, and catalase], oxidative stress [malondialdehyde (MDA) and advanced protein oxidation product], and nitric oxide metabolism end products (NOx) were measured in plasma. Following the administration of vitamin C, vitamin C, SOD, catalase, and MDA increased, while NOx decreased. V̄p and V̇e sensitivity to hypoxia was reduced in Older by ∼60% (P < 0.02). COPD patients exhibited similar V̄p and V̇e responses to Older (P > 0.05). Vitamin C did not have an effect on the hypoxic V̇e response but selectively decreased the V̄p sensitivity in Younger only. These findings suggest a reduced integrative reflex (i.e., cerebrovascular and ventilatory) during acute hypoxemia in healthy older adults. Vitamin C does not appear to have a large influence on the cerebrovascular or ventilatory responses during acute hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased ventilatory response to carbon dioxide in COPD patients following vitamin C administration

Patients with chronic obstructive pulmonary disease (COPD) have decreased ventilatory and cerebrovascular responses to hypercapnia. Antioxidants increase the ventilatory response to hypercapnia in healthy humans. Cerebral blood flow is an important determinant of carbon dioxide/hydrogen ion concentration at the central chemoreceptors and may be affected by antioxidants. It is unknown whether an...

متن کامل

Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflamm...

متن کامل

The Relationship between Vitamin E Plasma and BAL Concentrations, SOD Activity and Ventilatory Support Measures in Critically Ill Patients

Vitamin E is a potent reactive oxygen metabolites (ROM) scavenger. It is a lipid-soluble vitamin and its main function is to protect polyunsaturated fatty acids against oxidative stress. Twenty-five mechanically ventilated Intensive Care Unit (ICU) adult patients participated in a prospective randomized clinical trial receiving either placebo (10 patients) or 3 IM doses (1000 IU each) of vitami...

متن کامل

Ventilatory effects of 8 h of isocapnic hypoxia with and without beta-blockade in humans.

This study investigated whether changing sympathetic activity, acting via beta-receptors, might induce the progressive ventilatory changes observed in response to prolonged hypoxia. The responses of 10 human subjects to four 8-h protocols were compared: 1) isocapnic hypoxia (end-tidal PO2 = 50 Torr) plus 80-mg doses of oral propranolol; 2) isocapnic hypoxia, as in protocol 1, with oral placebo;...

متن کامل

Dexamethasone mimics aspects of physiological acclimatization to 8 hours of hypoxia but suppresses plasma erythropoietin

Dexamethasone ameliorates the severity of acute mountain sickness (AMS) but it is unknown whether it obtunds normal physiological responses to hypoxia. We studied whether dexamethasone enhanced or inhibited the ventilatory, cardiovascular, and pulmonary vascular responses to sustained (8 h) hypoxia. Eight healthy volunteers were studied, each on four separate occasions, permitting four differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 119 4  شماره 

صفحات  -

تاریخ انتشار 2015