Intelligent Backstepping Control for Genesio - Tesi Chaotic System using a Chaotic Particle Swarm OptimizationAlgorithm

نویسندگان

  • Alireza Khosravi
  • Hamed Mojallali
چکیده

Abstract—In this paper, an intelligent backstepping controller, tuned using a chaotic particle swarm optimization (CPSO), is proposed to control of chaos in Genesio-Tesi chaotic system. Thebackstepping method consists of parameters with positive values. The parameters are usually chosen optional by trial and error method. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the system. The proposed intelligent backstepping controller without trial and error determines the parameters of backstepping controller automatically and intelligently by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output. Finally, the efficiency of the proposed intelligent backstepping controller (IBSC) is illustrated by controlling the chaos of Genesio-Tesi chaotic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Chaotic Behavior in Duffing-holmes System using Backstepping Controller Optimized by Unified Particle Swarm Optimization Algorithm

The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in the paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is designed. The backstepping method consists of parameters with positive values. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the syste...

متن کامل

Adaptive Synchronization between Different Chaotic Systems with Unknown Parameters

This article deals with synchronization between different chaotic systems such as Genesio-Tesi and Qi system using adaptive control method. Based on Lyapunov stability theory, the synchronization between a pair of chaotic systems with fully unknown parameters is derived. An adaptive control law and a parameter update rule for unknown parameters are designed such that the chaotic Qi system is co...

متن کامل

Chaos Control of Lur’e Like Chaotic System using Backstepping Controller Optimized by Chaotic Particle Swarm Optimization

This paper deals with the design of optimal backstepping controller, by using the chaotic particle swarm optimization (CPSO) algorithm to control of chaos in Lur’e like chaotic system. The backstepping method consists of parameters which could have positive values. The parameters are usually chosen optional by trial and error method. The controlled system provides different behaviors for differ...

متن کامل

Stabilization of a Genesio-Tesi Chaotic System Using a Fractional Order PID Regulator

Based on the bifurcation diagram technique, this paper analyses the stabilization conditions of the nonlinear chaotic Genesio-Tesi system with the use of a fractional order control scheme. Stability analysis is performed for the closedloop nonlinear chaotic system behavior, for the fractional order integral and derivative actions by mean of the bifurcation diagram. Numerical simulation examples...

متن کامل

Adaptive controller design for modified projective synchronization of Genesio–Tesi chaotic system with uncertain parameters

The paper addresses control problem for the modified projective synchronization of the Genesio–Tesi chaotic systems with three uncertain parameters. An adaptive control law is derived to make the states of two identical Genesio– Tesi systems asymptotically synchronized up to specific ratios. The stability analysis in the paper is proved using a well-known Lyapunov stability theory. A numerical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012