A Singular Limit Problem for Conservation Laws Related to the Camassa-holm Shallow Water Equation

نویسندگان

  • GIUSEPPE MARIA COCLITE
  • GIUSEPPE M. COCLITE
  • KENNETH H. KARLSEN
چکیده

We consider a shallow water equation of Camassa-Holm type, containing nonlinear dispersive effects as well as fourth order dissipative effects. We prove that as the diffusion and dispersion parameters tend to zero, with a condition on the relative balance between these two parameters, smooth solutions of the shallow water equation converge to discontinuous solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Dissipative Solutions of the Camassa-Holm Equation

This paper is concerned with the global existence of dissipative solutions to the Camassa-Holm equation after wave breaking. By introducing a new set of independent and dependent variables, the evolution problem is rewritten as an O.D.E. in an L∞ space, containing a non-local source term which is discontinuous but has bounded directional variation along a suitable cone of directions. For a give...

متن کامل

Global conservative solutions of the Camassa-Holm equation

This paper develops a new approach in the analysis of the Camassa-Holm equation. By introducing a new set of independent and dependent variables, the equation is transformed into a semilinear system, whose solutions are obtained as fixed points of a contractive transformation. These new variables resolve all singularities due to possible wave breaking. Returning to the original variables, we ob...

متن کامل

An integrable shallow water equation with peaked solitons.

We derive a new completely integrable dispersive shallow water equation that is biHamiltonian and thus possesses an infinite number of conservation laws in involution. The equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler’s equations in the shallow water regime. The soliton solution for this equation has a limiting form that has a discontinuity in the f...

متن کامل

N ov 2 00 5 Analysis of singular solutions for two nonlinear wave equations

3 Distance defined by optimal transportation problem 33 3.1 A distance functional in the spatially periodic case. Introduction This thesis deals with two strongly nonlinear evolution Partial Differential Equation (in the following named P.D.E.) arising from mathematical physics. The first one was introduced first by Fokas and Fuchssteiner [28] as a bi-Hamiltonian equation, and then was rediscov...

متن کامل

Persistence Property and Asymptotic Description for DGH Equation with Strong Dissipation

where the constants α2 and γ/c 0 are squares of length scales and the constant c 0 > 0 is the critical shallow water wave speed for undisturbed water at rest at spatial infinity. Since this equation is derived by Dullin, Gottwald, and Holm, in what follows, we call this new integrable shallow water equation (1) DGH equation. If α = 0, (1) becomes the well-known KdV equation, whose solutions are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005