Mining Frequent Itemsets with Normalized Weight in Continuous Data Streams
نویسندگان
چکیده
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Data mining over data streams should support the flexible trade-off between processing time and mining accuracy. In many application areas, mining frequent itemsets has been suggested to find important frequent itemsets by considering the weight of itemsets. In this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)Mine with normalized weight over data streams. Moreover, we propose a novel tree structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed crucial information about frequent itemsets. Empirical results show that our algorithm outperforms comparative algorithms under the windowed streaming model. Keywords—Frequent Itemsets, Weighted Support, Window Sliding, Weighted Support FP-Tree, Data Stream, WSFI-Mine
منابع مشابه
Incremental updates of closed frequent itemsets over continuous data streams
Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the...
متن کاملMining Recent Frequent Itemsets in Sliding Windows over Data Streams
This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when 316 C....
متن کاملConcept Shift Detection for Frequent Itemsets from Sliding Windows over Data Streams
In a mobile business collaboration environment, frequent itemsets analysis will discover the noticeable associated events and data to provide important information of user behaviors. Many algorithms have been proposed for mining frequent itemsets over data streams. However, in many practical situations where the data arrival rate is very high, continuous mining the data sets within a sliding wi...
متن کاملAn Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights
Weighted frequent itemset mining is more practical than traditional frequent itemset mining, because it can consider different semantic significance (weight) of items. Many models and algorithms for mining weighted frequent itemsets have been proposed. These models assume that each item has a fixed weight. But in real world scenarios, the weight (price or significance) of the items may vary wit...
متن کاملMining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window
Mining frequent itemsets has been widely studied over the last decade. Past research focuses on mining frequent itemsets from static databases. In many of the new applications, data flow through the Internet or sensor networks. It is challenging to extend the mining techniques to such a dynamic environment. The main challenges include a quick response to the continuous request, a compact summar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JIPS
دوره 6 شماره
صفحات -
تاریخ انتشار 2010