Cutting-set methods for robust convex optimization with pessimizing oracles
نویسندگان
چکیده
We consider a general worst-case robust convex optimization problem, with arbitrary dependence on the uncertain parameters, which are assumed to lie in some given set of possible values.We describe a general method for solving such a problem, which alternates between optimization and worst-case analysis. With exact worst-case analysis, the method is shown to converge to a robust optimal point. With approximate worst-case analysis, which is the best we can do in many practical cases, the method seems to work very well in practice, subject to the errors in our worst-case analysis. We give variations on the basic method that can give enhanced convergence, reduce data storage, or improve other algorithm properties. Numerical simulations suggest that themethod finds a quite robust solutionwithin a few tens of steps; usingwarm-start techniques in the optimization steps reduces the overall effort to a modest multiple of solving a nominal problem, ignoring the parameter variation. The method is illustrated with several application examples.
منابع مشابه
A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization
We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable sem...
متن کاملCutting plane oracles to minimize non-smooth non-convex functions
We discuss a bundle method for non-smooth non-convex optimization programs. In the absence of convexity, a substitute for the cutting plane mechanism has to be found. We propose such a mechanism and prove convergence of our method in the sense that every accumulation point of the sequence of serious iterates is critical.
متن کاملConstrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems
Joint chance constrained problems give rise to many algorithmic challenges. Even in the convex case, i.e., when an appropriate transformation of the probabilistic constraint is a convex function, its cutting-plane linearization is just an approximation, produced by an oracle providing subgradient and function values that can only be evaluated inexactly. As a result, the cutting-plane model may ...
متن کاملA Bundle Method for Exploiting Additive Structure in Difficult Optimization Problems
This paper describes a bundle method for (approximately) minimizing complicated nonsmooth convex functions with additive structure, with the primary goal of computing bounds on the solution values of difficult optimization problems such as stochastic integer programs. The method combines features that have appeared in previously proposed bundle methods, but not in the particular configuration w...
متن کاملLevel bundle methods for constrained convex optimization with various oracles
We propose restricted memory level bundle methods for minimizing constrained convex nonsmooth optimization problems whose objective and constraint functions are known through oracles (black-boxes) that might provide inexact information. Our approach is general and covers many instances of inexact oracles, such as upper, lower and on-demand accuracy oracles. We show that the proposed level bundl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 24 شماره
صفحات -
تاریخ انتشار 2009