Magnetic collimation of the solar and stellar winds

نویسنده

  • K. Tsinganos
چکیده

We resolve the paradox that although magnetic collimation of an isotropic solar wind results in an enhancement of its proton flux along the polar directions, several observations indicate a wind proton flux peaked at the equator. To that goal, we solve the full set of the timedependent MHD equations describing the axisymmetric outflow of plasma from the magnetized and rotating Sun, either in its present form of the solar wind, or, in its earlier form of a protosolar wind. Special attention is directed towards the collimation properties of the solar outflow at large heliocentric distances. For the present day solar wind it is found that the poloidal streamlines and fieldlines are only slightly focused toward the solar poles. However, even such a modest compression of the flow by the azimuthal magnetic field would lead to an increase of the mass flux at the polar axis by about 20% at 1 AU, relatively to its value at the equator, for an initially isotropic at the base wind, contrary to older and recent (Prognoz, Ulysses, SOHO) observations. For the anisotropic in heliolatitude wind with parameters at the base inferred from in situ observations by ULYSSES/SWOOPS and SOHO/CDS the effect of collimation is almost totally compensated by the initial velocity and density anisotropy of the wind. This effect should be taken into account in the interpretation of the recent SOHO observations by the SWAN instrument. Similar simulations have been performed for a fiveand ten-fold increase of the solar angular velocity corresponding presumably to the wind of an earlier phase of our Sun. For such conditions it is found that for initially radial streamlines, the azimuthal magnetic field created by the fast rotation focus them toward the rotation axis and forms a tightly collimated jet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Solar Magnetic and Gravitational Energies Through the Virial Theorem

Virial theorem is important for understanding stellar structures. It produces an interesting connection between magnetic and gravitational energies. Using the general form of the virial theorem including the magnetic field (toroidal magnetic field), we may explain the solar dynamo model in relation to variations of the magnetic and gravitational energies. We emphasize the role of the gravitatio...

متن کامل

Stellar Outflows Driven by Magnetized Wide-Angle Winds

We present two-dimensional, cylindrically symmetric simulations of hydrodynamic and magnetohydrodynamic (MHD) wide-angle winds interacting with a collapsing environment. These simulations have direct relevance to young stellar objects (YSOs). The results may also be of use in the study of collimated outflows from proto-planetary and planetary nebulae. We study a range of wind configurations con...

متن کامل

Magnetic Collimation in PNe

Recent studies have focused on the the role of initially weak toroidal magnetic fields embedded in a stellar wind as the agent for collimation in planetary nebulae. In these models the wind is assumed to be permeated by a helical magnetic field in which the poloidal component falls off faster than the toroidal component. The collimation only occurs after the wind is shocked at large distances f...

متن کامل

New Mass Loss Measurements from Astrospheric Lyα Absorption

Measurements of stellar mass loss rates are used to assess how wind strength varies with coronal activity and age for solar-like stars. Mass loss generally increases with activity, but we find evidence that winds suddenly weaken at a certain activity threshold. Very active stars are often observed to have polar starspots, and we speculate that the magnetic field geometry associated with these s...

متن کامل

Numerical Simulations of Magnetized Winds of Solar-Like Stars

We investigate magnetized solar-like stellar winds by means of self-consistent threedimensional (3D) magnetohydrodynamics (MHD) numerical simulations. We analyze winds with different magnetic field intensities and densities as to explore the dependence on the plasma-β parameter. By solving the fully ideal 3D MHD equations, we show that the plasma-β parameter is the crucial parameter in the conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999