Genistein Increases the Sensitivity of Cardiac Ion Channels to b-Adrenergic Receptor Stimulation
نویسندگان
چکیده
The whole-cell patch-clamp technique was used to monitor the effects of genistein, a tyrosine kinase inhibitor, on membrane currents recorded from isolated guinea pig ventricular myocytes. Under control conditions, genistein (50 mmol/L) did not activate the latent cAMP-regulated Cl current (ICl). However, in the presence of a subthreshold concentration (1 nmol/L) of the b-adrenergic agonist isoproterenol (Iso), genistein caused a near-maximal activation of this current. In the absence of genistein, Iso activated ICl with an EC50 of 5 nmol/L. In the presence of genistein, Iso activated ICl with an EC50 of 0.3 nmol/L. This facilitatory effect was not observed in the presence of daidzein (50 mmol/L), an analogue of genistein that only weakly inhibits tyrosine kinase activity. Furthermore, peroxovanadate, a potent inhibitor of phosphotyrosine phosphatase activity, inhibited ICl activated by Iso alone, and it blocked the stimulatory effect of genistein in the presence of Iso. To determine whether the stimulatory effect of genistein was specific for ICl, we also studied its action on the cAMP-regulated delayed rectifier K 1 current (IK) and L-type Ca 21 current (ICa-L) present in these cells. Basal IK and ICa-L were partially ('30% to 40%) inhibited by genistein. However, this inhibitory effect was mimicked by daidzein, suggesting that inhibition of tyrosine kinase activity is not involved. In addition to the nonspecific inhibitory effect, genistein also caused a significant increase in the b-adrenergic sensitivity of the unblocked cationic currents. In the absence of genistein, 1 nmol/L Iso had no effect on either IK or ICa-L. However, in the presence of genistein, 1 nmol/L Iso significantly increased the magnitude of both currents. These results suggest that tyrosine kinase activity may play an important role in regulating b-adrenergic responsiveness of the heart. (Circ Res. 1998;83:33-42.)
منابع مشابه
Genistein increases the sensitivity of cardiac ion channels to beta-adrenergic receptor stimulation.
The whole-cell patch-clamp technique was used to monitor the effects of genistein, a tyrosine kinase inhibitor, on membrane currents recorded from isolated guinea pig ventricular myocytes. Under control conditions, genistein (50 micromol/L) did not activate the latent cAMP-regulated Cl- current (ICl). However, in the presence of a subthreshold concentration (1 nmol/L) of the beta-adrenergic ago...
متن کاملProtective Effect of Digoxin on Impaired Chronotropic Responsiveness to Adrenergic Stimulation in Cholestatic Rats
Decreased cardiac responsiveness to adrenergic stimulation has been observed in cholestatic liver disease, but the cause remains unclear. Previous reports have suggested that nitric oxide overproduction might have a role in cholestasis-induced bradycardia via inhibition of L-type calcium channels. In the present study, the digoxin has been used to increase cardiac Ca2+ transient in male Sprague...
متن کاملβ-adrenergic stimulation increases the intra-SR Ca termination threshold for spontaneous Ca waves in cardiac myocytes.
β-adrenergic stimulation of cardiac myocytes enhances intracellular calcium cycling, which frequently associates with pro-arrhythmic Ca waves. The threshold level of free calcium in the sarcoplasmic reticulum ([Ca]SR) where waves initiate is increased during β-adrenergic stimulation. ( 1) Here, we measured [Ca]SR directly to monitor the [Ca]SR level at which spontaneous Ca waves terminated (ter...
متن کاملMitochondria-rich cells as experimental model in studies of epithelial chloride channels.
The mitochondria-rich (mr) cell of amphibian skin epithelium is differentiated as a highly specialised pathway for passive transepithelial transport of chloride. The apical membrane of mr cells expresses several types of Cl(-) channels, of which the function of only two types has been studied in detail. (i) One type of channel is gated by voltage and external chloride concentration. This intrig...
متن کاملBeta-adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents
beta-Adrenergic stimulation of ventricular heart cells results in the enhancement of two important ion currents that regulate the plateau phase of the action potential: the delayed rectifier potassium channel current (IK) and L-type calcium channel current (ICa). The temperature dependence of beta-adrenergic modulation of these two currents was examined in patch-clamped guinea pig ventricular m...
متن کامل