Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations.

نویسندگان

  • Stefan Skupin
  • Gero Stibenz
  • Luc Bergé
  • Falk Lederer
  • Thomas Sokollik
  • Matthias Schnürer
  • Nickolai Zhavoronkov
  • Günter Steinmeyer
چکیده

We analyze pulse self-compression in femtosecond filaments, both experimentally and numerically. We experimentally demonstrate the compression of 45 fs pulses down to a duration of 7.4 fs at millijoule pulse energies. This sixfold compression in a self-generated filament does not require any means for dispersion compensation and is highly efficient. We compare our results to numerical simulations, providing a complete propagation model that accounts for full dispersion, pressure variations, Kerr nonlinearity and plasma generation in multiphoton and tunnel regimes. The equations are numerically integrated and allow for a quantitative comparison with the experiment. Our experiments and numerical simulations reveal a characteristic spectrotemporal structure of the self-compressed pulses, consisting of a compressible blue wing and an incompressible red pedestal. We explain the underlying mechanism that leads to this structure and examine the scalability of filament self-compression with respect to pulse energy and gas pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere

A sequence of femtosecond laser pulses propagating through atmosphere and delayed near the rotational recurrence period of N2 can resonantly drive molecular alignment. Through the polarization density, the molecular alignment provides an index of refraction contribution that acts as a lens copropagating with each laser pulse. Each pulse enhances this contribution to the index, modifying the pro...

متن کامل

Nonlinear Propagation of a Femtosecond Laser Pulse in Gases: Properties and Applications

When an intense femtosecond laser pulse propagates in a gas, it undergoes fila-mentation, a spectacular process where the pulse spatial, spectral and temporalcharacteristics change considerably. A thin short-lived plasma column is formed inthe wake of the propagating pulse. My PhD work has been dedicated to the furtherunderstanding of the filamentation process. In a first pa...

متن کامل

Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluor...

متن کامل

Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments

Broadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing - mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, res...

متن کامل

Rovibrational wave-packet dispersion during femtosecond laser filamentation in air.

An impulsive, femtosecond filament-based Raman technique producing high quality Raman spectra over a broad spectral range (1554.7-4155 cm(-1)) is presented. The temperature of gas phase molecules can be measured by temporally resolving the dispersion of impulsively excited vibrational wave packets. Application to laser-induced filamentation in air reveals that the initial rovibrational temperat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 74 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006