Holonomic Functions and Their Relation to Linearly Constrained Languages

نویسنده

  • Paolo Massazza
چکیده

— In this paper the class of Linearly Constrained Languages (LCL) is considered. A language L belongs to LCL iff il is the set of strings of a unambiguous context-free language L' that satisfy linear constraints on the number of occurrences of symbois. We prove that every language in LCL admits a holonomic generating function, namely a function that satisfies a linear differential équation with polynomial coefficients. Résumé. Dans cet article on considère la classe des langages avec des restrictions linéaires (LCL). Un langage L est dans la classe LCL si et seulement si il est l'ensemble de mots d'un langage algébrique non ambigu L' qui vérifient des restrictions linéaires sur le nombre des occurrences des lettres. Nous montrons que à chaque langage dans LCL on peut associer une fonction génératrice holonome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

A representation theorem for (q-)holonomic sequences

Chomsky and Schützenberger showed in 1963 that the sequence dL(n), which counts the number of words of a given length n in a regular language L, satisfies a linear recurrence relation with constant coefficients for n, i.e., it is C-finite. It follows that every sequence s(n) which satisfies a linear recurrence relation with constant coefficients can be represented as dL1 (n)− dL2 (n) for two re...

متن کامل

Identities for Families of Orthogonal Polynomials and Special Functions

In this article we present new results for families of orthogonal polynomials and special functions, that are determined by algorithmical approaches. In the first section, we present new results, especially for discrete families of orthogonal polynomials, obtained by an application of the celebrated Zeilberger algorithm. Next, we present algorithms for holonomic families f(n, x) of special func...

متن کامل

The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial

A sequence of rational functions in a variable q is q-holonomic if it satisfies a linear recursion with coefficients polynomials in q and qn. We prove that the degree of a q-holonomic sequence is eventually a quadratic quasi-polynomial, and that the leading term satisfies a linear recursion relation with constant coefficients. Our proof uses differential Galois theory (adapting proofs regarding...

متن کامل

Checking Identities Is Computationally Intractable (NP-Hard), So Human Provers Will Be Always Needed

In order to find a general framework for different combinatorial identities and identities that involve special functions, Bernshtein introduced in [1] a notion of holonomic functions. Let us recall this definition (in formulating it, we will follow [10]). A discrete holonomic function f(n) of one variable is defined as a solution of a homogeneous, linear difference equation with polynomial coe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ITA

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1993