R-diagonal Dilation Semigroups

نویسنده

  • TODD KEMP
چکیده

This paper addresses extensions of the complex Ornstein-Uhlenbeck semigroup to operator algebras in free probability theory. If a1, . . . , ak are ∗-free R-diagonal operators in a II1 factor, then Dt(ai1 · · · ain) = e −ntai1 · · · ain defines a dilation semigroup on the non-self-adjoint operator algebra generated by a1, . . . , ak. We show that Dt extends (in two different ways) to a semigroup of completely positive maps on the von Neumann algebra generated by a1, . . . , ak. Moreover, we show that Dt satisfies an optimal ultracontractive property: ‖Dt : L 2 → L‖ ∼ t for small t > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Ultracontractivity for R-diagonal Dilation Semigroups

This paper contains sharp estimates for the small-time behaviour of a natural class of one-parameter semigroups in free probability theory. We prove that the free Ornstein-Uhlenbeck semigroup Ut, when restricted to the free Segal-Bargmann (holomorphic) space H0 introduced in [K] and [Bi1], is ultracontractive with optimal bound ‖Ut : H 2 0 → H ∞ 0 ‖ ∼ t . This was shown, as an upper bound, in [...

متن کامل

Diagonal Ranks of Semigroups

We introduce the notion of diagonal ranks of semigroups, which are numerical characteristics of semigroups. Some base properties of diagonal ranks are obtained. A new criterion for a monoid being a group is obtained using diagonal ranks. For some semigroup classes we investigate whether their diagonal acts are finitely generated or not. For the semigroups of full transformations, partial transf...

متن کامل

E0-dilation of strongly commuting CP0-semigroups

We prove that every strongly commuting pair of CP0-semigroups has a minimal E0-dilation. This is achieved in two major steps, interesting in themselves: 1: we show that a strongly commuting pair of CP0semigroups can be represented via a two parameter product system representation; 2: we prove that every fully coisometric product system representation has a fully coisometric, isometric dilation....

متن کامل

E-dilation of strongly commuting CP-semigroups (the nonunital case)

In a previous paper, we showed that every strongly commuting pair of CP0-semigroups on a von Neumann algebra (acting on a separable Hilbert space) has an E0-dilation. In this paper we show that if one restricts attention to the von Neumann algebra B(H) then the unitality assumption can be dropped, that is, we prove that every pair of strongly commuting CP-semigroups on B(H) has an E-dilation. T...

متن کامل

Quantum Stochastic Semigroups

A rigged Hilbert space characterisation of the unbounded generators of quantum completely positive (CP) stochastic semigroups is given. The general form and the dilation of the stochastic completely dissipative (CD) equation over the algebra L (H) is described, as well as the unitary quantum stochastic dilation of the subfiltering and contractive flows with unbounded generators is constructed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008