Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development.
نویسندگان
چکیده
The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host.
منابع مشابه
A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites
Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species ...
متن کاملImmunoproteomic analysis of the protein repertoire of unsporulated Eimeria tenella oocysts
The apicomplexan protozoans Eimeria spp. cause coccidioses, the most common intestinal diseases in chickens. Coccidiosis is associated with significant animal welfare issues and has a high economic impact on the poultry industry. Lack of a full understanding of immunogenic molecules and their precise functions involved in the Eimeria life cycles may limit development of effective vaccines and d...
متن کاملTransgenic Eimeria tenella as a vaccine vehicle: expressing TgSAG1 elicits protective immunity against Toxoplasma gondii infections in chickens and mice
The surface antigen 1 of Toxoplasma gondii (TgSAG1) is a major immunodominant antigen and is widely considered an ideal candidate for the development of an effective recombinant vaccine against toxoplasmosis. Eimeria tenella, an affinis apicomplexan parasite with T. gondii, is a potential vaccine vector carrying exogenous antigens that stimulates specific immune responses. Here, we engineered T...
متن کاملpiggyBac Transposon-Mediated Transgenesis in the Apicomplexan Parasite Eimeria tenella
piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI...
متن کاملTransfection of Eimeria mitis with Yellow Fluorescent Protein as Reporter and the Endogenous Development of the Transgenic Parasite
BACKGROUND Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. METHODS AND FINDINGS Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP) expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 38 شماره
صفحات -
تاریخ انتشار 2015