Structure-adaptive sparse denoising for diffusion-tensor MRI

نویسندگان

  • Lijun Bao
  • Marc C. Robini
  • Wanyu Liu
  • Yue Min Zhu
چکیده

Diffusion tensor magnetic resonance imaging (DT-MRI) is becoming a prospective imaging technique in clinical applications because of its potential for in vivo and non-invasive characterization of tissue organization. However, the acquisition of diffusion-weighted images (DWIs) is often corrupted by noise and artifacts, and the intensity of diffusion-weighted signals is weaker than that of classical magnetic resonance signals. In this paper, we propose a new denoising method for DT-MRI, called structure-adaptive sparse denoising (SASD), which exploits self-similarity in DWIs. We define a similarity measure based on the local mean and on a modified structure-similarity index to find sets of similar patches that are arranged into three-dimensional arrays, and we propose a simple and efficient structure-adaptive window pursuit method to achieve sparse representation of these arrays. The noise component of the resulting structure-adaptive arrays is attenuated by Wiener shrinkage in a transform domain defined by two-dimensional principal component decomposition and Haar transformation. Experiments on both synthetic and real cardiac DT-MRI data show that the proposed SASD algorithm outperforms state-of-the-art methods for denoising images with structural redundancy. Moreover, SASD achieves a good trade-off between image contrast and image smoothness, and our experiments on synthetic data demonstrate that it produces more accurate tensor fields from which biologically relevant metrics can then be computed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Title Reconstructing diffusion kurtosis tensors from sparse noisymeasurements

Diffusion kurtosis imaging (DKI) is a recent MRI based method that can quantify deviation from Gaussian behavior using a kurtosis tensor. DKI has potential value for the assessment of neurologic diseases. Existing techniques for diffusion kurtosis imaging typically need to capture hundreds of MRI images, which is not clinically feasible on human subjects. In this paper, we develop robust denois...

متن کامل

Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation.

Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm ...

متن کامل

Simultaneous Denoising and Registration for Accurate Cardiac Diffusion Tensor Reconstruction from MRI

Cardiac diffusion tensor MR imaging (DT-MRI) allows to analyze 3D fiber organization of the myocardium which may enhance the understanding of, for example, cardiac remodeling in conditions such as ventricular hypertrophy. Diffusion-weighted MRI (DW-MRI) denoising methods rely on accurate spatial alignment of all acquired DW images. However, due to cardiac and respiratory motion, cardiac DT-MRI ...

متن کامل

Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising

Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2013