J ul 1 99 3 Algorithm xxx — ORTHPOL : A package of routines for generating orthogonal polynomials and Gauss - type quadrature rules ∗
نویسنده
چکیده
A collection of subroutines and examples of their uses, as well as the underlying numerical methods, are described for generating orthogonal polynomials relative to arbitrary weight functions. The object of these routines is to produce the coefficients in the three-term recurrence relation satisfied by the orthogonal polynomials. Once these are known, additional data can be generated, such as zeros of orthogonal polynomials and Gauss-type quadrature rules, for which routines are also provided. 1991 Mathematics Subject Classification. Primary 33–04, 33C45, 65–04, 65D32. CR Classification Scheme. G.1.2, G.1.4, G.4.
منابع مشابه
ORTHOGONAL ZERO INTERPOLANTS AND APPLICATIONS
Orthogonal zero interpolants (OZI) are polynomials which interpolate the “zero-function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s can be constructed by the 3-term recurrence relation. These interpolants are found useful in the solution of constrained approximation problems and in the structure of Gauss-type quadrature rules. We present some theoretical...
متن کاملCalculation of Gauss Quadrature Rules
Several algorithms are given and compared for computing Gauss quadrature rules. It is shown that given the three term recurrence relation for the orthogonal polynomials generated by the weight function, the quadrature rule may be generated by computing the eigenvalues and first component of the orthornormalized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also presented for c...
متن کاملRational Gauss Quadrature
The existence of (standard) Gauss quadrature rules with respect to a nonnegative measure dμ with support on the real axis easily can be shown with the aid of orthogonal polynomials with respect to this measure. Efficient algorithms for computing the nodes and weights of an n-point Gauss rule use the n × n symmetric tridiagonal matrix determined by the recursion coefficients for the first n orth...
متن کاملA Gaussian quadrature rule for oscillatory integrals on a bounded interval
We investigate a Gaussian quadrature rule and the corresponding orthogonal polynomials for the oscillatory weight function ei!x on the interval [ 1, 1]. We show that such a rule attains high asymptotic order, in the sense that the quadrature error quickly decreases as a function of the frequency !. However, accuracy is maintained for all values of ! and in particular the rule elegantly reduces ...
متن کاملStable Computation of High Order Gauss Quadrature Rules Using Discretization for Measures in Radiation Transfer
The solution of the radiation transfer equation for the Earth's atmosphere needs to account for the re ectivity of the ground. When using the spherical harmonics method, the solution for this term involves an integral with a particular measure that presents numerical challenges. We are interested in computing a high order Gauss quadrature rule for this measure. We show that the two classical al...
متن کامل