SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development
نویسندگان
چکیده
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength.
منابع مشابه
Splicing-Dependent Trans-synaptic SALM3–LAR-RPTP Interactions Regulate Excitatory Synapse Development and Locomotion
Synaptic adhesion molecules regulate diverse aspects of synapse development and plasticity. SALM3 is a PSD-95-interacting synaptic adhesion molecule known to induce presynaptic differentiation in contacting axons, but little is known about its presynaptic receptors and in vivo functions. Here, we identify an interaction between SALM3 and LAR family receptor protein tyrosine phosphatases (LAR-RP...
متن کاملStructural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion.
Synaptic adhesion molecules orchestrate synaptogenesis. The presynaptic leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) regulate synapse development by interacting with postsynaptic Slit- and Trk-like family proteins (Slitrks), which harbour two extracellular leucine-rich repeats (LRR1 and LRR2). Here we identify the minimal regions of the LAR-RPTPs and Slitr...
متن کاملLAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate
The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-...
متن کاملSALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3–LAR adhesion
Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development throug...
متن کاملReceptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual system.
Receptor protein tyrosine phosphatases (RPTPs) are regulators of axon outgrowth and guidance in a variety of different vertebrate and invertebrate systems. Three RPTPs, CRYP-alpha, PTP-delta, and LAR, are expressed in overlapping but distinct patterns in the developing Xenopus retina, including expression in retinal ganglion cells (RGCs) as they send axons to the tectum (Johnson KG, Holt CE. 20...
متن کامل