Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data
نویسندگان
چکیده
Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5.
منابع مشابه
بهرهگیری از مدل اثرات اختلاط خطی جهت پیش بینی غلظت ذرات معلق در سطح زمین: مطالعه موردی در تهران
Background and Objective: In the recent decade, critical condition of particulate matters (PMs) concentration is considered as one of the most important issues in Tehran megacity. Due to sparse spatial distribution of air quality monitoring stations and economic considerations, researchers proposed remote sensing technique as a fast and economical way to obtain complete spatial and temporal cov...
متن کاملA Generalized Additive Model Combining Principal Component Analysis for PM2.5 Concentration Estimation
As an extension of the traditional Land Use Regression (LUR) modelling, the generalized additive model (GAM) was developed in recent years to explore the non-linear relationships between PM2.5 concentrations and the factors impacting it. However, these studies did not consider the loss of information regarding predictor variables. To address this challenge, a generalized additive model combinin...
متن کاملAn Ensemble Spatiotemporal Model for Predicting PM2.5 Concentrations
Although fine particulate matter with a diameter of <2.5 μm (PM2.5) has a greater negative impact on human health than particulate matter with a diameter of <10 μm (PM10), measurements of PM2.5 have only recently been performed, and the spatial coverage of these measurements is limited. Comprehensively assessing PM2.5 pollution levels and the cumulative health effects is difficult because PM2.5...
متن کاملSurvey of (PM2.5) Concentrations in Sari\'s City Center in 2010
Background and purpose: Because of the high traffic flow in the city center in Sari, a walk through survey indicated that the PM2.5 concentrations are likely to be higher than the standards. This study was carried out to determine the level of PM2.5 at the streets' curbsides in the city center in Sari. Materials and Methods: In this cross-sectional study the PM2.5 concentrations were measure...
متن کاملSpatial and Temporal Distribution of PM2.5 Pollution in Xi’an City, China
The monitoring data of the 13 stations in Xi'an city for the whole years of 2013 and 2014 was counted and analyzed. Obtaining the spatial and temporal distribution characteristics of PM2.5 was the goal. Cluster analysis and the wavelet transform were utilized to discuss the regional distribution characteristics of PM2.5 concentration (ρ(PM2.5)) and the main features of its yearly changes and su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015