Learning the Optimal Neighborhood Kernel for Classification

نویسندگان

  • Jun Liu
  • Jianhui Chen
  • Songcan Chen
  • Jieping Ye
چکیده

Kernel methods have been applied successfully in many applications. The kernel matrix plays an important role in kernel-based learning methods, but the “ideal” kernel matrix is usually unknown in practice and needs to be estimated. In this paper, we propose to directly learn the “ideal” kernel matrix (called the optimal neighborhood kernel matrix) from a pre-specified kernel matrix for improved classification performance. We assume that the prespecified kernel matrix generated from the specific application is a noisy observation of the ideal one. The resulting optimal neighborhood kernel matrix is shown to be the summation of the pre-specified kernel matrix and a rank-one matrix. We formulate the problem of learning the optimal neighborhood kernel as a constrained quartic problem, and propose to solve it using two methods: level method and constrained gradient descent. Empirical results on several benchmark data sets demonstrate the efficiency and effectiveness of the proposed algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Task Learning Using Neighborhood Kernels

This paper introduces a new and effective algorithm for learning kernels in a Multi-Task Learning (MTL) setting. Although, we consider a MTL scenario here, our approach can be easily applied to standard single task learning, as well. As shown by our empirical results, our algorithm consistently outperforms the traditional kernel learning algorithms such as uniform combination solution, convex c...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

The Role of Social Capital in Promoting Popular Participation and Optimal Urban Management (Case Study: Koy Neighborhood, Government Employees and Five Hundred Units of the City of Douganbadan)

Social capital is a form of traditional solidarity of society in which groups of people can pursue their individual interests by dedicating themselves to social projects. Participation is a process that mobilizes local resources, utilizes diverse social groups in decision making, locals engage in defining problems, collecting and learning information and implementing projects. The purpose of t...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features

Intelligent fault diagnosis benefits from efficient feature selection. Neighborhood rough sets are effective in feature selection. However, determining the neighborhood value accurately remains a challenge. The wrapper feature selection algorithm is designed by combining the kernel method and neighborhood rough sets to self-adaptively select sensitive features. The combination effectively solve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009