Efficient list decoding of punctured Reed-Muller codes

نویسندگان

  • Venkatesan Guruswami
  • Lingfei Jin
  • Chaoping Xing
چکیده

The Reed-Muller (RM) code encoding n-variate degree-d polynomials over Fq for d < q, with its evaluation on Fq , has relative distance 1− d/q and can be list decoded from a 1−O( √ d/q) fraction of errors. In this work, for d ≪ q, we give a length-efficient puncturing of such codes which (almost) retains the distance and list decodability properties of the Reed-Muller code, but has much better rate. Specificially, when q = Ω(d/ε), we given an explicit rate Ω ( ε d! ) puncturing of Reed-Muller codes which have relative distance at least (1 − ε) and efficient list decoding up to (1 − √ε) error fraction. This almost matches the performance of random puncturings which work with the weaker field size requirement q = Ω(d/ε). We can also improve the field size requirement to the optimal (up to constant factors) q = Ω(d/ε), at the expense of a worse list decoding radius of 1− ε and rate Ω (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reed-Muller Codes: Spherically-Punctured Codes and Decoding Algorithms

OF THE DISSERTATION Reed-Muller Codes: Spherically-Punctured Codes and Decoding Algorithms

متن کامل

List Decoding for Reed-Muller Codes and Its Application to Polar Codes

Gopalan, Klivans, and Zuckerman proposed a list-decoding algorithm for Reed-Muller codes. Their algorithm works up to a given list-decoding radius. Dumer, Kabatiansky, and Tavernier improved the complexity of the algorithm for binary Reed-Muller codes by using wellknown Plotkin construction. In this study, we propose a list-decoding algorithm for non-binary Reed-Muller codes as a natural genera...

متن کامل

List Decoding of Reed-Muller Codes Based on a Generalized Plotkin Construction

Gopalan, Klivans, and Zuckerman proposed a listdecoding algorithm for Reed-Muller codes. Their algorithm works up to a given list-decoding radius. Dumer, Kabatiansky, and Tavernier improved the complexity of the algorithm for binary Reed-Muller codes by using the well-known Plotkin construction. In this study, we propose a list-decoding algorithm for non-binary Reed-Muller codes as a generaliza...

متن کامل

Another Generalization of the Reed-Muller Codes

The punctured binary Reed-Muller code is cyclic and was generalized into the punctured generalized ReedMuller code over GF(q) in the literature. The major objective of this paper is to present another generalization of the punctured binary Reed-Muller code. Another objective is to construct a family of reversible cyclic codes that are related to the newly generalized Reed-Muller codes. Index Te...

متن کامل

List Decoding of q - ary Reed - Muller Codes 1 )

The q-ary Reed-Muller codes RMq(u,m) of length n = q are a generalization of Reed-Solomon codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for Reed-Muller codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.00603  شماره 

صفحات  -

تاریخ انتشار 2015