Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum.

نویسندگان

  • Roni Cohen
  • Melissa R Suzuki
  • Kenneth E Hammel
چکیده

Brown rot basidiomycetes have long been thought to lack the processive cellulases that release soluble sugars from crystalline cellulose. On the other hand, these fungi remove all of the cellulose, both crystalline and amorphous, from wood when they degrade it. To resolve this discrepancy, we grew Gloeophyllum trabeum on microcrystalline cellulose (Avicel) and purified the major glycosylhydrolases it produced. The most abundant extracellular enzymes in these cultures were a 42-kDa endoglucanase (Cel5A), a 39-kDa xylanase (Xyn10A), and a 28-kDa endoglucanase (Cel12A). Cel5A had significant Avicelase activity--4.5 nmol glucose equivalents released/min/mg protein. It is a processive endoglucanase, because it hydrolyzed Avicel to cellobiose as the major product while introducing only a small proportion of reducing sugars into the remaining, insoluble substrate. Therefore, since G. trabeum is already known to produce a beta-glucosidase, it is now clear that this brown rot fungus produces enzymes capable of yielding assimilable glucose from crystalline cellulose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Characterization of the Endoglucanase Cel12A from Gloeophyllum trabeum Reveals an Enzyme Highly Active on β-Glucan

The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometr...

متن کامل

Decay mechanisms of brown-rot fungi

Brown-rot fungi, e.g. the dryrot fungus (Serpula lacrymans), are the most harmful microorganisms in wood in service in Finland and in temperate regions. Brownrot fungi cause wood decay primarly by attacking the carbohydrates of the cell walls, leaving lignin essentially undigested. At the initial stage of the decay, the brown-rot fungi seem to operate by a mechanism which cause extensive change...

متن کامل

Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis.

Brown rot fungi Gloeophyllum trabeum and Postia placenta were used to degrade aspen, spruce, or corn stover over 16 weeks. Decayed residues were saccharified using commercial cellulases or brown rot fungal extracts, loaded at equal but low endoglucanase titers. Saccharification was then repeated for high-yield samples using full strength commercial cellulases. Overall, brown rot pretreatments e...

متن کامل

Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction.

We have identified key components of the extracellular oxidative system that the brown rot fungus Gloeophyllum trabeum uses to degrade a recalcitrant polymer, polyethylene glycol, via hydrogen abstraction reactions. G. trabeum produced an extracellular metabolite, 2,5-dimethoxy-1,4-benzoquinone, and reduced it to 2,5-dimethoxyhydroquinone. In the presence of 2,5-dimethoxy-1,4-benzoquinone, the ...

متن کامل

An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum.

The brown-rot basidiomycete Gloeophyllum trabeum uses a quinone redox cycle to generate extracellular Fenton reagent, a key component of the biodegradative system expressed by this highly destructive wood decay fungus. The hitherto uncharacterized quinone reductase that drives this cycle is a potential target for inhibitors of wood decay. We have identified the major quinone reductase expressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 5  شماره 

صفحات  -

تاریخ انتشار 2005