The quantum chemical causality of pMHC-TCR biological avidity: Peptide atomic coordination data and the electronic state of agonist N termini
نویسندگان
چکیده
The quantum state of functional avidity of the synapse formed between a peptide-Major Histocompatibility Complex (pMHC) and a T cell receptor (TCR) is a subject not previously touched upon. Here we present atomic pair correlation meta-data based on crystalized tertiary structures of the Tax (HTLV-1) peptide along with three artificially altered variants, all of which were presented by the (Class I) HLA-A201 protein in complexation with the human (CD8(+)) A6TCR. The meta-data reveal the existence of a direct relationship between pMHC-TCR functional avidity (agonist/antagonist) and peptide pair distribution function (PDF). In this context, antagonist peptides are consistently under-coordinated in respect to Tax. Moreover, Density Functional Theory (DFT) datasets in the BLYP/TZ2P level of theory resulting from relaxation of the H species on peptide tertiary structures reveal that the coordination requirement of agonist peptides is also expressed as a physical observable of the protonation state of their N termini: agonistic peptides are always found to retain a stable ammonium (NH3 (+)) terminal group while antagonist peptides are not.
منابع مشابه
Quantum chemical calculations predict biological function: the case of T cell receptor interaction with a peptide/MHC class I
A combination of atomic correlation statistics and quantum chemical calculations are shown to predict biological function. In the present study, various antigenic peptide-Major Histocompatibility Complex (pMHC) ligands with near-identical stereochemistries, in complexation with the same T cell receptor (TCR), were found to consistently induce distinctly different quantum chemical behavior, dire...
متن کاملThe coordination of unprotonated peptide tertiary structure as a metric of pMHC–TCR functional avidity
The coordination difference between the unprotonated tertiary structures of a native (Tax) peptide and a number of its variants - all peptides presented by HLA-A201 and bound to the human A6 T cell receptor-was discovered to constitute a metric of pMHC-TCR functional avidity. Moreover, increasing coordination deviations from the index were found to flag correspondingly weakening immunological o...
متن کاملAtomic Coordination Reflects Peptide Immunogenicity
We demonstrated that the immunological identity of variant peptides may be accurately predicted on the basis of atomic coordination of both unprotonated and protonated tertiary structures, provided that the structure of the native peptide (index) is known. The metric which was discovered to account for this discrimination is the coordination difference between the variant and the index; we also...
متن کاملIdentification of Rare High-Avidity, Tumor-Reactive CD8+ T Cells by Monomeric TCR-Ligand Off-Rates Measurements on Living Cells.
The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest inte...
متن کاملDecreased binding of peptides-MHC class I (pMHC) multimeric complexes to CD8 affects their binding avidity for the TCR but does not significantly impact on pMHC/TCR dissociation rate.
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC bi...
متن کامل