Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

نویسندگان

  • Hao Zhao
  • Bao-Lin Yang
  • Zeng-Xu Liu
  • Qing Yu
  • Wen-Jun Zhang
  • Keng Yuan
  • Hui-Hong Zeng
  • Gao-Chun Zhu
  • De-Ming Liu
  • Qing Li
چکیده

Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplantation of Olfactory Mucosa Improve Functional Recovery and Axonal Regeneration Following Sciatic Nerve Repair in Rats

Background: Olfactory ensheathing glia (OEG) has been shown to have a neuroprotective effect after being transplanted in rats with spinal cord injury. This study was conducted to determine the possible beneficial results of olfactory mucosa transplantation (OMT) which is a source of OEG on functional recovery and axonal regeneration after transection of the sciatic nerve. Methods: In this study...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Minocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury

Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...

متن کامل

Sciatic nerve remyelination and nodal formation following olfactory ensheathing cell transplantation

SCIATIC NERVE REMYELINATION AND NODAL FORMATION FOLLOWING OLFACTORY ENSHEATHING CELL TRANSPLANTATION. Mary A. Dombrowski, Masanori Sasaki, Karen L. Lankford, Hajime Tokuno, Christine Radtke, Jeffery D. Kocsis. Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, Rehabilitation Research Center, Veterans Affairs Connecti...

متن کامل

Peripheral Nerve Regeneration: A Current Perspective

OBJECTIVE Nerve regenerative is a complex problem and cell therapy strategies are being developed to enhance axonal regeneration. One approach is to transplant peripheral myelin-forming cells (Schwann cells or olfactory ensheathing cells) that can secrete neurotrophic factors and participate in remyelination of regenerated axons. The objectives of this report are to first review the basic regen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015