Regulation of photoreceptor phosphodiesterase catalysis by its non-catalytic cGMP-binding sites.
نویسندگان
چکیده
The photoreceptor 3':5'-cyclic nucleotide phosphodiesterase (PDE) is the central enzyme of visual excitation in rod photoreceptors. The hydrolytic activity of PDE is precisely regulated by its inhibitory gamma subunit (Pgamma), which binds directly to the catalytic site. We examined the inhibition of frog rod outer segment PDE by endogenous Pgamma, as well as by synthetic peptides corresponding to its central and C-terminal domains, to determine whether the non-catalytic cGMP-binding sites on the catalytic alphabeta dimer of PDE allosterically regulate PDE activity. We found that the apparent binding affinity of Pgamma for PDE was 28 pM when cGMP occupied the non-catalytic sites, whereas Pgamma had an apparent affinity only 1/16 of this when the sites were empty. The elevated basal activity of PDE with empty non-catalytic sites can be decreased by the addition of nanomolar levels of cGMP, demonstrating that the high-affinity non-catalytic sites on the PDE catalytic dimer mediate this effect. No evidence for a direct allosteric effect of the non-catalytic sites on catalysis could be detected for the activated enzyme lacking bound Pgamma. The intrinsic affinity of a synthetic C-terminal (residues 63-87) Pgamma peptide to bind and to inhibit the hydrolytic activity of activated PDE was enhanced 300-fold in the presence of cGMP compared with cAMP. We conclude that the binding of cGMP to the non-catalytic sites of PDE induces an allosteric change in the structure of the catalytic domain that greatly enhances the interaction of the C-terminus of Pgamma with the catalytic domain.
منابع مشابه
Mechanism of transducin activation of frog rod photoreceptor phosphodiesterase. Allosteric interactiona between the inhibitory gamma subunit and the noncatalytic cGMP-binding sites.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transd...
متن کاملcGMP binding to noncatalytic sites on mammalian rod photoreceptor phosphodiesterase is regulated by binding of its gamma and delta subunits.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activat...
متن کاملcGMP binding sites on photoreceptor phosphodiesterase: role in feedback regulation of visual transduction.
A central step in vertebrate visual transduction is the rapid drop in cGMP levels that causes cGMP-gated ion channels in the photoreceptor cell membrane to close. It has long been a puzzle that the cGMP phosphodiesterase (PDE) whose activation causes this decrease contains not only catalytic sites for cGMP hydrolysis but also noncatalytic cGMP binding sites. Recent work has shown that occupancy...
متن کاملFunctional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1).
The cGMP phosphodiesterase (PDE6) involved in visual transduction in photoreceptor cells contains two inhibitory γ-subunits (Pγ) which bind to the catalytic core (Pαβ) to inhibit catalysis and stimulate cGMP binding to the GAF domains of Pαβ. During visual excitation, interaction of activated transducin with Pγ relieves inhibition. Pγ also participates in a complex with RGS9-1 and other protein...
متن کاملStructural features of the noncatalytic cGMP binding sites of frog photoreceptor phosphodiesterase using cGMP analogs.
The cGMP-specific phosphodiesterase (PDE) of retinal photoreceptors is a central regulatory enzyme in the visual transduction pathway of vertebrate vision. Although the mechanism of activation of PDE by transducin is well understood, the role of the noncatalytic cGMP binding sites located on the catalytic subunits of PDE remains obscure. We report here for the first time the molecular basis of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 340 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1999