Crossover Homeostasis in Yeast Meiosis
نویسندگان
چکیده
Crossovers produced by homologous recombination promote accurate chromosome segregation in meiosis and are controlled such that at least one forms per chromosome pair and multiple crossovers are widely spaced. Recombination initiates with an excess number of double-strand breaks made by Spo11 protein. Thus, crossover control involves a decision by which some breaks give crossovers while others follow a predominantly noncrossover pathway(s). To understand this decision, we examined recombination when breaks are reduced in yeast spo11 hypomorphs. We find that crossover levels tend to be maintained at the expense of noncrossovers and that genomic loci differ in expression of this "crossover homeostasis." These findings define a previously unsuspected manifestation of crossover control, i.e., that the crossover/noncrossover ratio can change to maintain crossovers. Our results distinguish between existing models of crossover control and support the hypothesis that an obligate crossover is a genetically programmed event tied to crossover interference.
منابع مشابه
Meiotic recombination protein Rec12: functional conservation, crossover homeostasis and early crossover/non-crossover decision
In fission yeast and other eukaryotes, Rec12 (Spo11) is thought to catalyze the formation of dsDNA breaks (DSBs) that initiate homologous recombination in meiosis. Rec12 is orthologous to the catalytic subunit of topoisomerase VI (Top6A). Guided by the crystal structure of Top6A, we engineered the rec12 locus to encode Rec12 proteins each with a single amino acid substitution in a conserved res...
متن کاملMek1/Mre4 is a master regulator of meiotic recombination in budding yeast
Sexually reproducing organisms create gametes with half the somatic cell chromosome number so that fusion of gametes at fertilization does not change the ploidy of the cell. This reduction in chromosome number occurs by the specialized cell division of meiosis in which two rounds of chromosome segregation follow a single round of chromosome duplication. Meiotic crossovers formed between the non...
متن کاملThe pch2Δ Mutation in Baker's Yeast Alters Meiotic Crossover Levels and Confers a Defect in Crossover Interference
Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Delta mutants display wild-type crossover levels on a small (III) chromosom...
متن کاملGenetic Analysis of Baker's Yeast Msh4-Msh5 Reveals a Threshold Crossover Level for Meiotic Viability
During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific ...
متن کاملCrossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast.
Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 126 شماره
صفحات -
تاریخ انتشار 2006