A DEAD-Box Protein Functions as an ATP-Dependent RNA Chaperone in Group I Intron Splicing
نویسندگان
چکیده
The Neurospora crassa CYT-18 protein, the mitochondrial tyrosyl-tRNA synthetase, functions in splicing group I introns by inducing formation of the catalytically active RNA structure. Here, we identified a DEAD-box protein (CYT-19) that functions in concert with CYT-18 to promote group I intron splicing in vivo and vitro. CYT-19 does not bind specifically to group I intron RNAs and instead functions as an ATP-dependent RNA chaperone to destabilize nonnative RNA structures that constitute kinetic traps in the CYT-18-assisted RNA-folding pathway. Our results demonstrate that a DExH/D-box protein has a specific, physiologically relevant chaperone function in the folding of a natural RNA substrate.
منابع مشابه
A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone.
Group II intron RNAs self-splice in vitro but only at high salt and/or Mg2+ concentrations and have been thought to require proteins to stabilize their active structure for efficient splicing in vivo. Here, we show that a DEAD-box protein, CYT-19, can by itself promote the splicing and reverse splicing of the yeast aI5gamma and bI1 group II introns under near-physiological conditions by acting ...
متن کاملThe splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function.
Group I and II introns self-splice in vitro, but require proteins for efficient splicing in vivo, to stabilize the catalytically active RNA structure. Recent studies showed that the splicing of some Neurospora crassa mitochondrial group I introns additionally requires a DEAD-box protein, CYT-19, which acts as an RNA chaperone to resolve nonnative structures formed during RNA folding. Here we sh...
متن کاملDEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous re...
متن کاملThe Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
Structured RNAs traverse complex energy landscapes that include valleys representing misfolded intermediates. In Neurospora crassa and Saccharomyces cerevisiae, efficient splicing of mitochondrial group I and II introns requires the DEAD box proteins CYT-19 and Mss116p, respectively, which promote folding transitions and function as general RNA chaperones. To test the generality of RNA misfoldi...
متن کاملMss116p
RNA folding is an essential aspect underlying RNA-mediated cellular processes. Many RNAs, including large, multi-domain ribozymes, are capable of folding to the native, functional state without assistance of a protein cofactor in vitro. In the cell, trans-acting factors, such as proteins, are however known to modulate the structure and thus the fate of an RNA. DEAD-box proteins, including Mss11...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 109 شماره
صفحات -
تاریخ انتشار 2002