Spectral problem on graphs and L-functions
نویسنده
چکیده
The scattering process on multiloop infinite p + 1-valent graphs (generalized trees) is studied. These graphs are discrete spaces being quotients of the uniform tree over free acting discrete subgroups of the projective group PGL(2,Qp). As the homogeneous spaces, they are, in fact, identical to p-adic multiloop surfaces. The Ihara–Selberg L-function is associated with the finite subgraph—the reduced graph containing all loops of the generalized tree. We study the spectral problem on these graphs, for which we introduce the notion of spherical functions—eigenfunctions of a discrete Laplace operator acting on the graph. We define the S-matrix and prove its unitarity. We present a proof of the Hashimoto–Bass theorem expressing L-function of any finite (reduced) graph via determinant of a local operator ∆(u) acting on this graph and relate the S-matrix determinant to this L-function thus obtaining the analogue of the Selberg trace formula. The discrete spectrum points are also determined and classified by the L-function. Numerous examples of L-function calculations are presented. E-mail: [email protected]
منابع مشابه
SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملUpper Bounds on Algebraic Connectivity via Convex Optimization
The second smallest eigenvalue of the Laplacian matrix L of a graph is called its algebraic connectivity. We describe a method for obtaining an upper bound on the algebraic connectivity of a family of graphs G. Our method is to maximize the second smallest eigenvalue over the convex hull of the Laplacians of graphs in G, which is a convex optimization problem. By observing that it suffices to o...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملEntropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid
The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کامل