An Ore-type analogue of the Sauer-Spencer Theorem
نویسندگان
چکیده
Two graphs G1 and G2 of order n pack if there exist injective mappings of their vertex sets into [n], such that the images of the edge sets do not intersect. Sauer and Spencer proved that if (G1) (G2) < 0.5n, then G1 and G2 pack. In this note, we study an Ore-type analogue of the Sauer–Spencer Theorem. Let θ(G) = max{d(u)+ d(v) : uv ∈ E(G)}. We show that if θ(G1) (G2) < n, then G1 and G2 pack. We also characterize the pairs (G1,G2) of n-vertex graphs satisfying θ(G1) (G2) = n that do not pack.
منابع مشابه
The Regularity Lemma and applications to packings in graphs
In this thesis we investigate applications of Szemerédi’s Regularity Lemma [20]. This result was originally formulated to solve number-theoretical problems. However, we consider its applications in graph theory, in particular to packing results. We begin by introducing some of the basic notions that are needed to understand and use the Regularity Lemma. From this we give an outline of some tool...
متن کاملExtremal Theorems for Degree Sequence Packing and the Two-Color Discrete Tomography Problem
A sequence π = (d1, . . . , dn) is graphic if there is a simple graph G with vertex set {v1, . . . , vn} such that the degree of vi is di. We say that graphic sequences π1 = (d (1) 1 , . . . , d (1) n ) and π2 = (d (2) 1 , . . . , d (2) n ) pack if there exist edge-disjoint n-vertex graphs G1 and G2 such that for j ∈ {1, 2}, dGj (vi) = d (j) i for all i ∈ {1, . . . , n}. Here, we prove several ...
متن کاملExtremal Graphs for a Graph Packing Theorem of Sauer and Spencer
Let G1 and G2 be graphs of order n with maximum degree ∆1 and ∆2, respectively. G1 and G2 are said to pack if there exist injective mappings of the vertex sets into [n], such that the images of the edge sets do not intersect. Sauer and Spencer showed that if ∆1∆2 < n 2 , then G1 and G2 pack. We extend this result by showing that if ∆1∆2 ≤ n2 , then G1 and G2 do not pack if and only if one of G1...
متن کاملAlmost multiplicative linear functionals and approximate spectrum
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 23 شماره
صفحات -
تاریخ انتشار 2007