Hybridization-sensitive fluorescent DNA probe with self-avoidance ability.

نویسندگان

  • Shuji Ikeda
  • Takeshi Kubota
  • Mizue Yuki
  • Hiroyuki Yanagisawa
  • Shizuho Tsuruma
  • Akimitsu Okamoto
چکیده

Hybridization-sensitive fluorescent probes have an inherent disadvantage: self-dimerization of the probe prevents the fluorescence quenching prior to hybridization with the target, resulting in a high background signal. To avoid self-dimerization of probes, we focused on a base pair formed by 2'-deoxyinosine (I) and N(4)-ethyl-2'-deoxycytidine (E). I and E bases form more stable base pairs with cytosine and guanine, respectively, compared with an I/E base pair. New hybridization-sensitive fluorescent probes, IE probes, were prepared containing three unnatural nucleotides, I, E and D(514) as a doubly thiazole orange-labeled nucleotide. The IE probes had low thermostability, sufficient to avoid self-dimerization. Absorption spectra of the IE probes exhibited a hybridization-dependent shift of the absorption maximum, suggesting that excitonic interaction was working between the thiazole orange dyes in the probe. Interdye excitonic interaction of IE probes was very effective; thus, replacement of guanine and cytosine with I and E improved the ratio of fluorescence intensities after and before hybridization (I(hybrid)/I(nonhybrid)). Although a significant weakness in fluorescence intensity was observed for several IE probes after hybridization with the target sequence when both or either of the bases adjacent to D(514) is E, a dramatic recovery of the fluorescence intensity of hybrids was observed when any E adjacent to D(514) was replaced with cytosine. Improvement of the I(hybrid)/I(nonhybrid) value by incorporation of I and E helped the design of a long probe sequence for mRNA imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دورگه‌سازی در محل؛ اصول و کاربردها : مقاله مروری

In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...

متن کامل

Applications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders

Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...

متن کامل

Hybridization-responsive fluorescent DNA probes containing the adenine analog 2-aminopurine.

There is increasing need for rapid and efficient methods of detecting microorganisms and single nucleotide polymorphisms (SNPs) using DNA probe hybridization. Self-quenching hairpin probes such as molecular beacons are useful in separation-free homogeneous assays of high specificity [1], but the complexity of beacon synthesis makes their cost prohibitive for many routine applications. In this w...

متن کامل

A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-contai...

متن کامل

Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization.

In fluorescent in situ hybridization (FISH), the efficiency of hybridization between the DNA probe and the rRNA has been related to the accessibility of the rRNA when ribosome content and cell permeability are not limiting. Published rRNA accessibility maps show that probe brightness is sensitive to the organism being hybridized and the exact location of the target site and, hence, it is highly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2010