Swapping Variables for High-Dimensional Sparse Regression from Correlated Measurements

نویسندگان

  • Divyanshu Vats
  • Richard G. Baraniuk
چکیده

We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms—such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions—perform poorly when the measurement matrix contains highly correlated columns. To address this shortcoming, we develop a simple greedy algorithm, called SWAP, that iteratively swaps variables until convergence. SWAP is surprisingly effective in handling measurement matrices with high correlations. In fact, we prove that SWAP outputs the true support, the locations of the non-zero entries in the sparse vector, under a relatively mild condition on the measurement matrix. Furthermore, we show that SWAP can be used to boost the performance of any sparse regression algorithm. We empirically demonstrate the advantages of SWAP by comparing it with several state-of-the-art sparse regression algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swapping Variables for High-Dimensional Sparse Regression with Correlated Measurements

We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms—such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions—perform poorly when the measurement matr...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

Sparse Estimation with Strongly Correlated Variables using Ordered Weighted `1 Regularization

This paper studies ordered weighted `1 (OWL) norm regularization for sparse estimation problems with strongly correlated variables. We prove sufficient conditions for clustering based on the correlation/colinearity of variables using the OWL norm, of which the so-called OSCAR [4] is a particular case. Our results extend previous ones for OSCAR in several ways: for the squared error loss, our co...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Sign-constrained least squares estimation for high-dimensional regression

Many regularization schemes for high-dimensional regression have been put forward. Most require the choice of a tuning parameter, using model selection criteria or cross-validation. We show that a simple sign-constrained least squares estimation is a very simple and effective regularization technique for a certain class of high-dimensional regression problems. The sign constraint has to be deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1312.1706  شماره 

صفحات  -

تاریخ انتشار 2013