Catalyst Role in Chemical Vapor Deposition (cvd) Process: a Review
نویسندگان
چکیده
The article describes significant role of catalyst in the deposition of various materials on different substrates surface via Chemical vapor deposition (CVD) process. CVD is a complex process of depositing thin coatings on a substrate surface via chemical reactions of gaseous materials. It is a useful process to produce materials of high purity, density and strength. It has emerged as a novel manufacturing technique in industrial sectors such as semiconductor and ceramic industries. Catalyst Enhanced Chemical Vapor Deposition (CECVD) is an enhancement method, used for the synthesis of nanomaterials on thermally sensitive substrates in the presence of appropriate metal catalysts. Such catalysts not only ensure the deposition to be carried out at considerably low temperature but they also produce films of high purity. The article provides the published data about nanomaterials synthesis by CECVD process. Catalytic chemical vapor deposition (CCVD) is another efficient and low-cost method for the mass production of highly pure carbon nanotubes (CNTs). In this process, CNTs are produced by the catalytic decomposition of hydrocarbon vapors. Cobalt, Iron, Nickel and their alloys are the most widely used catalysts in CNTs production through CVD process. This idea has been explained in detail with appropriate examples from recent literature.
منابع مشابه
Comparison of two methods of carbon nanotube synthesis: CVD and supercritical process (A review)
A carbon nanotube (CNT) is a miniature cylindrical carbon structure that has hexagonalgraphite molecules attached at the edges. Nanotubes look like a powder or black soot, but they'reactually rolled-up sheets of graphene that form hollow strands with walls that are only one atom thick.Carbon nanotube has been one of the most actively explored materials in recent year(s) due to...
متن کاملCatalyst of Ni and Co dependencies for carbon nanotube synthesis by CVD method
In this research, the effect of catalyst type on the CNTs synthesis was investigated. The carbonnanotubes (CNTs) were produced on stainless steel substrates and two of catalyst with differentcharacteristics by using Thermal chemical vapor deposition (TCVD) method. The catalysts have theimportant role for the growth carbon nanotubes (CNTs). Acetylene gas (C2H2) diluted by NH3 wasused as the reac...
متن کاملChemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production.
This review article deals with the growth mechanism and mass production of carbon nanotubes (CNTs) by chemical vapor deposition (CVD). Different aspects of CNT synthesis and growth mechanism are reviewed in the light of latest progresses and understandings in the field. Materials aspects such as the roles of hydrocarbon, catalyst and catalyst support are discussed. Many new catalysts and new ca...
متن کاملOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملTemperature Threshold and Water Role in CVD Growth of Single-Walled Carbon Nanotubes
An in-depth understanding of the growth process of single-walled carbon nanotubes is of vital importance to the control of the yield of the material and its carbon structure. Using a nickel/silica (Ni/SiOx) catalyst, we have conducted a series of growth experiments with a chemical vapor deposition (CVD) system. We find that there is a temperature threshold in the CVD process, and if the reactio...
متن کامل