Operating cost sensitivity to required time of arrival commands to ensure separation in optimal aircraft 4D trajectories
نویسندگان
چکیده
Trajectory optimisation has shown good potential to reduce environmental impact in aviation. However, a recurring problem is the loss in airspace capacity that fuel optimal procedures pose, usually overcome with speed, altitude or heading advisories that lead to more costly trajectories. This paper aims at the quantification in terms of fuel and time consumption of implementing suboptimal trajectories in a 4D trajectory context that use required times of arrival at specific navigation fixes. A case study is presented by simulating conflicting Airbus A320 departures from two major airports in Catalonia. It is shown how requiring an aircraft to arrive at a waypoint early or late leads to increased fuel burn. In addition, the efficiency of such methods to resolve air traffic conflicts is studied in terms of both fuel burn and resulting aircraft separations. Finally, various scenarios are studied reflecting various airline preferences with regards to cost and fuel burn, as well as different route and conflict geometries for a broader scope of study.
منابع مشابه
Automated Conflict Resolution for Air Traffic Control
This paper describes a conflict resolution algorithm that can provide automated separation assurance for the next generation air traffic control system. The algorithm generates resolution trajectories that can be sent to the aircraft from a ground-based system via data link. With suitable reconfiguration the algorithm can also be installed on board aircraft to support airborne separation assura...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملA Model for Runway Landing Flow and Capacity with Risk and Cost Benefit Factors
As the demand for the civil aviation has been growing for decades and the system becoming increasingly complex, the use of systems engineering and operations research tools have shown to be of further use in managing this system. In this study, we apply such tools in managing landing operations on runways (as the bottleneck and highly valuable resources of air transportation networks) to handle...
متن کاملMapping Lessons from Ants to Free Flight: An Ant-based Weather Avoidance Algorithm in Free Flight Airspace
The continuing growth of air traffic worldwide motivates the need for new approaches to air traffic management that are more flexible both in terms of traffic volume and weather. Free Flight is one such approach seriously considered by the aviation community. However the benefits of Free Flight are severely curtailed in the convective weather season when weather is highly active, leading aircra...
متن کاملEvaluation of the Monotonic Lagrangian Grid and Lat-Long Grid for Air Traffic Management
The Air Traffic Monotonic Lagrangian Grid (ATMLG) is used to simulate a 24 hour period of air traffic flow in the National Airspace System (NAS). During this time period, there are 41,594 flights over the United States, and the flight plan information (departure and arrival airports and times, and waypoints along the way) are obtained from an Federal Aviation Administration (FAA) Enhanced Traff...
متن کامل