Mechanism of tetrodotoxin block and resistance in sodium channels.

نویسندگان

  • Rong Chen
  • Shin-Ho Chung
چکیده

Tetrodotoxin (TTX) has been used for many decades to characterize the structure and function of biological ion channels. Yet, the precise mechanism by which TTX blocks voltage-gated sodium (NaV) channels is not fully understood. Here molecular dynamics simulations are used to elucidate how TTX blocks mammalian voltage-gated sodium (Nav) channels and why it fails to be effective for the bacterial sodium channel, NaVAb. We find that, in NaVAb, a sodium ion competes with TTX for the binding site at the extracellular end of the filter, thus reducing the blocking efficacy of TTX. Using a model of the skeletal muscle channel, NaV1.4, we show that the conduction properties of the channel observed experimentally are faithfully reproduced. We find that TTX occludes the entrance of NaV1.4 by forming a network of hydrogen-bonds at the outer lumen of the selectivity filter. The guanidine group of TTX adopts a lateral orientation, rather than pointing into the filter as proposed previously. The acidic residues just above the selectivity filter are important in stabilizing the hydrogen-bond network between TTX and NaV1.4. The effect of two single mutations of a critical tyrosine residue in the filter of NaV1.4 on TTX binding observed experimentally is reproduced using computational mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structural Basis and Functional Consequences of Interactions Between Tetrodotoxin and Voltage-Gated Sodium Channels

Tetrodotoxin (TTX) is a highly specific blocker of voltage-gated sodium channels. The dissociation constant of block varies with different channel isoforms. Until recently, channel resistance was thought to be primarily imparted by amino acid substitutions at a single position in domain I. Recent work reveals a novel site for tetrodotoxin resistance in the P-region of domain IV.

متن کامل

Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels.

The effects of riluzole, a neuroprotective drug, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion neurons were studied using the whole-cell patch clamp technique. At the resting potential, riluzole preferentially blocked TTX-S sodium channels, whereas at more negative potentials, it blocked both types of sodium channels almost equa...

متن کامل

Pharmacological properties of axonal sodium channels in the cockroach Periplaneta americana L. I. Selective block by synthetic saxitoxin.

Voltage-clamp experiments on isolated giant axons of the cockroach Periplaneta americana L. show that chemically synthesized saxitoxin specifically and reversibly blocks the transient inward sodium current without affecting the steady-state outward potassium current. From the concentration depending of sodium current suppression it is concluded that individual sodium channels are blocked by sin...

متن کامل

اثر نترودوتوکسین و کادمیم روی آزاد شدن و متابولیسم سیستم های سروتونرژیک و نورآدنرژیک هیپوکامپ

Using the technique of in vivo microdialysis, we examined the relationship between neuronal firing and neurotransmitter release and metabolism in the hippocampus) The neurotoxin tetrodotoxin (TTX) was applied locally to block voltage-sensitive sodium channels) and extracellular Ca + + was replaced with cadmium (Cd + + ) to inhibit Ca + + dependant neurotransmitter release. The effectes of these...

متن کامل

Block of sodium currents in rat dorsal root ganglion neurons by diphenhydramine.

To elucidate the local anesthetic mechanism of diphenhydramine, its effects on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion (DRG) neurons were examined by the whole-cell voltage clamp method. Diphenhydramine blocked TTX-S and TTX-R sodium currents with K(d) values of 48 and 86 microM, respectively, at a holding potential of -80 mV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 446 1  شماره 

صفحات  -

تاریخ انتشار 2014