Schizophrenia susceptibility gene dysbindin regulates glutamatergic and dopaminergic functions via distinctive mechanisms in Drosophila.

نویسندگان

  • Lisha Shao
  • Yichun Shuai
  • Jie Wang
  • Shanxi Feng
  • Binyan Lu
  • Zuo Li
  • Yukai Zhao
  • Lianzhang Wang
  • Yi Zhong
چکیده

The dysfunction of multiple neurotransmitter systems is a striking pathophysiological feature of many mental disorders, schizophrenia in particular, but delineating the underlying mechanisms has been challenging. Here we show that manipulation of a single schizophrenia susceptibility gene, dysbindin, is capable of regulating both glutamatergic and dopaminergic functions through two independent mechanisms, consequently leading to two categories of clinically relevant behavioral phenotypes. Dysbindin has been reported to affect glutamatergic and dopaminergic functions as well as a range of clinically relevant behaviors in vertebrates and invertebrates but has been thought to have a mainly neuronal origin. We find that reduced expression of Drosophila dysbindin (Ddysb) in presynaptic neurons significantly suppresses glutamatergic synaptic transmission and that this glutamatergic defect is responsible for impaired memory. However, only the reduced expression of Ddysb in glial cells is the cause of hyperdopaminergic activities that lead to abnormal locomotion and altered mating orientation. This effect is attributable to the altered expression of a dopamine metabolic enzyme, Ebony, in glial cells. Thus, Ddysb regulates glutamatergic transmission through its neuronal function and regulates dopamine metabolism by regulating Ebony expression in glial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor.

Environmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product d...

متن کامل

The Schizophrenia-Related Protein Dysbindin-1A Is Degraded and Facilitates NF-Kappa B Activity in the Nucleus

Dystrobrevin-binding protein 1 (DTNBP1), a gene encoding dysbindin-1, has been identified as a susceptibility gene for schizophrenia. Functioning with partners in synapses or the cytoplasm, this gene regulates neurite outgrowth and neurotransmitter release. Loss of dysbindin-1 affects schizophrenia pathology. Dysbindin-1 is also found in the nucleus, however, the characteristics of dysbindin in...

متن کامل

DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias.

Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbi...

متن کامل

The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse.

Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk...

متن کامل

The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics.

Dysbindin is a schizophrenia susceptibility gene required for the development of dendritic spines. The expression of dysbindin proteins is decreased in the brains of schizophrenia patients, and neurons in mice carrying a deletion in the dysbindin gene have fewer dendritic spines. Hence, dysbindin might contribute to the spine pathology of schizophrenia, which manifests as a decrease in the numb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 46  شماره 

صفحات  -

تاریخ انتشار 2011