ar X iv : m at h / 04 10 62 1 v 1 [ m at h . Q A ] 2 9 O ct 2 00 4 HOMOTOPY ALGEBRAS AND NONCOMMUTATIVE GEOMETRY

نویسندگان

  • ALASTAIR HAMILTON
  • ANDREY LAZAREV
چکیده

We study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras and establish the Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras thus generalising previous work by Loday and Gerstenhaber-Schack. These results are then used to show that a C∞-algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-algebra (an ∞-generalisation of a commutative Frobenius algebra introduced by Kontsevich). As another application, we show that the 'string topology' operations (the loop product, the loop bracket and the string bracket) are homotopy invariant and can be defined on the homology or equivariant homology of an arbitrary Poincaré duality space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 7 . 39 37 v 1 [ m at h . Q A ] 2 6 Ju l 2 00 7 COHOMOLOGY THEORIES FOR HOMOTOPY ALGEBRAS AND NONCOMMUTATIVE GEOMETRY

This paper builds a general framework in which to study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras. This framework is based on noncommutative geometry as expounded by Connes and Kontsevich. The developed machinery is then used to establish a general form of Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras. This generalizes and puts in ...

متن کامل

ar X iv : m at h / 06 08 39 5 v 1 [ m at h . Q A ] 1 5 A ug 2 00 6 CHARACTERISTIC CLASSES OF A ∞ - ALGEBRAS

A standard combinatorial construction, due to Kontsevich, associates to any A∞-algebra with an invariant inner product, an inhomogeneous class in the cohomology of the moduli spaces of Riemann surfaces with marked points. We describe an alternative version of this construction based on noncommutative geometry and use it to prove that homotopy equivalent algebras give rise to the same cohomology...

متن کامل

ar X iv : 0 80 1 . 09 04 v 1 [ m at h . A T ] 7 J an 2 00 8 CHARACTERISTIC CLASSES OF A ∞ - ALGEBRAS

A standard combinatorial construction, due to Kontsevich, associates to any A∞-algebra with an invariant inner product, an inhomogeneous class in the cohomology of the moduli spaces of Riemann surfaces with marked points. We propose an alternative version of this construction based on noncommutative geometry and use it to prove that homotopy equivalent algebras give rise to the same cohomology ...

متن کامل

ar X iv : h ep - t h / 01 07 25 1 v 1 2 9 Ju l 2 00 1 Introduction to M ( atrix ) theory and noncommutative geometry , Part II

This review paper is a continuation of hep-th/0012145 and it deals primarily with noncommutative R d spaces. We start with a discussion of various algebras of smooth functions on noncommutative R d that have different asymptotic behavior at infinity. We pay particular attention to the differences arising when working with nonunital algebras and the unitized ones obtained by adjoining the unit e...

متن کامل

ar X iv : m at h / 06 05 13 1 v 1 [ m at h . O A ] 4 M ay 2 00 6 Trees , Ultrametrics , and Noncommutative Geometry

Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004