Presynaptic inhibition and antidromic spikes in primary afferents of the crayfish: a computational and experimental analysis.

نویسندگان

  • D Cattaert
  • F Libersat
  • A El Manira A
چکیده

Primary afferent depolarizations (PADs) are associated with presynaptic inhibition and antidromic discharges in both vertebrates and invertebrates. In the present study, we have elaborated a realistic compartment model of a primary afferent from the coxobasipodite chordotonal organ of the crayfish based on anatomical and electrophysiological data. The model was used to test the validity of shunting and sodium channel inactivation hypotheses to account for presynaptic inhibition. Previous studies had demonstrated that GABA activates chloride channels located on the main branch close to the first branching point. We therefore focused the analysis on the effect of GABA synapses on the propagation of action potentials in the first axonal branch. Given the large diameters of the sensory axons in the region in which PADs were likely to be produced and recorded, the model indicates that a relatively large increase in chloride conductance (up to 300 nS) is needed to significantly reduce the amplitude of sensory spikes. The role of the spatial organization of GABA synapses in the sensory arborization was analyzed, demonstrating that the most effective location for GABA synapses is in the area of transition from active to passive conduction. This transition is likely to occur on the main branch a few hundred micrometers distal to the first branching point. As a result of this spatial organization, antidromic spikes generated by large-amplitude PADs are prevented from propagating distally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of antidromic discharges in crayfish primary afferents.

Contrary to orthodromic spikes that are generated in sensory organs and conveyed to CNS, antidromic spikes are generated in the axon terminals of the sensory neurons within the CNS and are conveyed to the peripheral sensory organ. Antidromic discharges are observed in primary afferent neurons of both vertebrates and invertebrates and seem to be related to the rhythmic activity of central neural...

متن کامل

RAPID COMMUNICATION Antidromic Modulation of a Proprioceptor Sensory Discharge in Crayfish

Bévengut, Michelle, François Clarac, and Daniel Cattaert. Antithe periphery in the sensory axons (El Manira et al 1991b). dromic modulation of a proprioceptor sensory discharge in crayfish. These spikes have no postsynaptic effect centrally (Cattaert J. Neurophysiol. 78: 1180–1183, 1997. In the proprioceptive neuet al. 1994; El Manira et al 1991b) but their peripheral rons of the coxo-basal cho...

متن کامل

Antidromic modulation of a proprioceptor sensory discharge in crayfish.

In the proprioceptive neurons of the coxo-basal chortotonal organ, orthodromic spikes convey the sensory information from the cell somata (located peripherally) to the central output terminals. During fictive locomotion, presynaptic depolarizations of these central terminals elicit bursts of antidromic spikes that travel back to the periphery. To determine whether the antidromic spikes modified...

متن کامل

Extent of branching and conduction velocities of ascending and descending primary afferents in isolated spinal cord of the rat and hamster

Wall and Shortland (1991) have shown that afferent fibers entering the cord in thoracic and lumbar roots of adult rats have branches that may penetrate up to 11 segments caudally from the root entry zone. We have investigated the extent of branching and conduction velocities of ascending and descending branches of lumbar and thoracic primary afferents in isolated spinal cords of adult hamsters ...

متن کامل

The retrograde spread of synaptic potentials and recruitment of presynaptic inputs.

Lateral excitation is a mechanism for amplifying coordinated input to postsynaptic neurons that has been described recently in several species. Here, we describe how a postsynaptic neuron, the lateral giant (LG) escape command neuron, enhances lateral excitation among its presynaptic mechanosensory afferents in the crayfish tailfan. A lateral excitatory network exists among electrically coupled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2001