Calcium influx and protein phosphorylation mediate the metabolic stabilization of synaptic acetylcholine receptors in muscle.

نویسندگان

  • P Caroni
  • S Rotzler
  • J C Britt
  • H R Brenner
چکیده

During neuromuscular synapse development, the degradation rate of ACh receptors (AChRs) accumulated in the synaptic portion of the muscle membrane is drastically reduced under neural control, their half-life t1/2 increasing from 1 d to about 12 d. Recent evidence suggests that the metabolic stability of synaptic AChRs is mediated by the muscle activity induced by the nerve. We have now investigated the pathway linking muscle activity and metabolic stabilization of synaptic AChRs in organ cultured rat muscle. Soleus and diaphragm muscles were denervated for 14-40 d, a procedure leading to the destabilization of synaptic AChRs, and conditions required to restabilize synaptic AChRs in the denervated muscle were analyzed. The activity-dependent stabilization of synaptic AChRs in chronically denervated endplates required calcium entry through dihydropyridine-sensitive Ca2+ channels activated by high-frequency stimulation for approximately 6 hr and was specific for synaptic AChRs. As in vivo, extrasynaptic AChRs were not stabilized, and their t1/2 remained 1 d. The stabilization process was not dependent on de novo protein synthesis, and it could also be brought about by elevated cAMP levels. Furthermore, it required shorter stimulation periods in the presence of the phosphatase inhibitors okadaic acid and calyculin A, whereas blockade of protein kinases with high doses of staurosporine blocked the stabilization. Activity-dependent, dihydropyridine-sensitive as well as cAMP-dependent phosphorylation of myosin light chain was observed. These findings are consistent with the notion that muscle activity initiates AChR stabilization via the activation of calcium-dependent protein phosphorylation reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

N-Methyl-d-aspartate Receptors Mediate the Phosphorylation and Desensitization of Muscarinic Receptors in Cerebellar Granule Neurons*

Changes in synaptic strength mediated by ionotropic glutamate N-methyl-D-asparate (NMDA) receptors is generally considered to be the molecular mechanism underlying memory and learning. NMDA receptors themselves are subject to regulation through signaling pathways that are activated by G-protein-coupled receptors (GPCRs). In this study we investigate the ability of NMDA receptors to regulate the...

متن کامل

Time lapse in vivo visualization of developmental stabilization of synaptic receptors at neuromuscular junctions.

The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo i...

متن کامل

The Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action

Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 1993