The Importance of the Selberg Integral

نویسندگان

  • PETER J. FORRESTER
  • Atle Selberg
چکیده

It has been remarked that a fair measure of the impact of Atle Selberg’s work is the number of mathematical terms that bear his name. One of these is the Selberg integral, an n-dimensional generalization of the Euler beta integral. We trace its sudden rise to prominence, initiated by a question to Selberg from Enrico Bombieri, more than thirty years after its initial publication. In quick succession the Selberg integral was used to prove an outstanding conjecture in random matrix theory and cases of the Macdonald conjectures. It further initiated the study of q-analogues, which in turn enriched the Macdonald conjectures. We review these developments and proceed to exhibit the sustained prominence of the Selberg integral as evidenced by its central role in random matrix theory, Calogero–Sutherland quantum many-body systems, Knizhnik–Zamolodchikov equations, and multivariable orthogonal polynomial theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selberg integral involving the S generalized Gauss's hypergeometric function, a class of polynomials the multivariable I-function and multivariable Aleph-functions

ABSTRACT In the present paper we evaluate the Selberg integral involving the S generalized Gauus's hypergeometric function, a multivariable Aleph-function, the multivariable I-function defined by Nambisan et al [3] and general class of polynomials of several variables. The importance of the result established in this paper lies in the fact they involve the I-function of several variables which ...

متن کامل

The Selberg integral and Young books ( Extended Abstract )

The Selberg integral is an important integral first evaluated by Selberg in 1944. Stanley found a combinatorial interpretation of the Selberg integral in terms of permutations. In this paper, new combinatorial objects “Young books” are introduced and shown to have a connection with the Selberg integral. This connection gives an enumeration formula for Young books. It is shown that special cases...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

Variations on a Formula of Selberg

α∈R (∣∣〈ρk, α∨〉+ kα + 1 2kα/2∣∣)! (∣∣〈ρk, α∨〉+ 1 2kα/2∣∣)! • Also in 1982, A. Koranyi uses the Selberg formula to compute the volumes of bounded symmetric domains. • In 1987, K. Aomoto studies a slight generalization of the Selberg integral arising from work on Fock space representations of the Virasoro algebra. Here a connection with hypergeometric functions, specifically Jacobi polynomials is...

متن کامل

The Mukhin–Varchenko conjecture for type A

We present a generalisation of the famous Selberg integral. This confirms the g = An case of a conjecture by Mukhin and Varchenko concerning the existence of a Selberg integral for each simple Lie algebra g. Résumé. On présente une généralisation de la bien connue intégrale de Selberg. Cette généralisation vérifie le cas g = An de la conjecture de Mukhin et Varchenko concernant l’existence d’un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008