On the Vertices of the d-Dimensional Birkhoff Polytope
نویسندگان
چکیده
Let us denote by Ωn the Birkhoff polytope of n× n doubly stochastic matrices. As the Birkhoff–von Neumann theorem famously states, the vertex set of Ωn coincides with the set of all n× n permutation matrices. Here we consider a higherdimensional analog of this basic fact. Let Ω n be the polytope which consists of all tristochastic arrays of order n. These are n×n×n arrays with nonnegative entries in which every line sums to 1. What can be said about Ω n ’s vertex set? It is well known that an order-n Latin square may be viewed as a tristochastic array where every line contains n − 1 zeros and a single 1 entry. Indeed, every Latin square of order n is a vertex of Ω n , but as we show, such vertices constitute only a vanishingly small subset of Ω n ’s vertex set. More concretely, we show that the number of vertices of Ω (2) n is at least (Ln) 3 2−o(1), where Ln is the number of order-n Latin squares. We also briefly consider similar problems concerning the polytope of n× n× n arrays where the entries in every coordinate hyperplane sum to 1, improving a result from Kravtsov (Cybern. Syst. Anal., 43(1):25–33, 2007). Several open questions are presented as well.
منابع مشابه
Modelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملThe Boundary Volume of a Lattice Polytope
For a d-dimensional convex lattice polytope P , a formula for the boundary volume vol(∂P ) is derived in terms of the number of boundary lattice points on the first bd/2c dilations of P . As an application we give a necessary and sufficient condition for a polytope to be reflexive, and derive formulae for the f -vector of a smooth polytope in dimensions 3, 4, and 5. We also give applications to...
متن کاملThe k-assignment polytope
In this paper we study the structure of the k-assignment polytope, whose vertices are the m× n (0,1)-matrices with exactly k 1:s and at most one 1 in each row and each column. This is a natural generalisation of the Birkhoff polytope and many of the known properties of the Birkhoff polytope are generalised. A representation of the faces by certain bipartite graphs is given. This tool is used to...
متن کاملFaces of Birkhoff Polytopes
The Birkhoff polytope Bn is the convex hull of all (n×n) permutation matrices, i.e., matrices where precisely one entry in each row and column is one, and zeros at all other places. This is a widely studied polytope with various applications throughout mathematics. In this paper we study combinatorial types L of faces of a Birkhoff polytope. The Birkhoff dimension bd(L) of L is the smallest n s...
متن کاملCombinatorial bounds on nonnegative rank and extended formulations
An extended formulation of a polytope P is a system of linear inequalities and equations that describe some polyhedron which can be projected onto P. Extended formulations of small size (i.e., number of inequalities) are of interest, as they allow to model corresponding optimization problems as linear programs of small sizes. In this paper, we describe several aspects and new results on the mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 51 شماره
صفحات -
تاریخ انتشار 2014