Overcoming a nucleosomal barrier to replication

نویسندگان

  • Han-Wen Chang
  • Manjula Pandey
  • Olga I. Kulaeva
  • Smita S. Patel
  • Vasily M. Studitsky
چکیده

Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31-40) and +(41-65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin replication: TRANSmitting the histone code.

Efficient overcoming of the nucleosomal barrier and accurate maintenance of associated histone marks during chromatin replication are essential for normal functioning of the cell. Recent studies revealed new protein factors and histone modifications contributing to overcoming the nucleosomal barrier, and suggested an important role for DNA looping in survival of the original histones during rep...

متن کامل

Nucleosomal Barrier to Transcription: Structural Determinants and Changes in Chromatin Structure.

Packaging of DNA into chromatin affects all processes on DNA. Nucleosomes present a strong barrier to transcription, raising important questions about the nature and the mechanisms of overcoming the barrier. Recently it was shown that DNA sequence, DNA-histone interactions and backtracking by RNA polymerase II (Pol II) all contribute to formation of the barrier. After partial uncoiling of nucle...

متن کامل

Overcoming a nucleosomal barrier to transcription

We have studied the kinetics of transcription through a nucleosome core. RNA polymerase transcribes the first approximately 25 bp of nucleosomal DNA rapidly, but then hits a barrier and continues slowly to the nucleosomal dyad region. Here, the barrier disappears and the transcript is completed at a rapid rate, as if on free DNA, indicating that histone octamer transfer is completed as polymera...

متن کامل

I-19: Identifying and Overcoming an Epigenetic Barrier for SCNT Reprogramming

Background Despite successful cloning of many mammalian species, the cloning efficiency is extremely low compared to that of IVF raising the possibility of the existence of epigenetic barrier preventing successful cloning. MaterialsAndMethods Using comparative transcriptome analysis comparing transcriptomes of IVF and SCNT embryos and that of donor cells, we identified epigenetic barrier and fi...

متن کامل

Structural analysis of nucleosomal barrier to transcription.

Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA-histone interactions and Pol II backtr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016