Face Recognition using Feed Forward Neural Network
نویسنده
چکیده
In this paper, we propose four techniques for extraction of facial features namely 2DPCA, LDA, KPCA and KFA. The purpose of face feature extraction is to capture certain discriminative features that are unique for a person. In the previous works that uses PCA for face feature extraction involves merging the features and reducing the dimensions that results in some information loss. To overcome this problem, in the first method we used 2D-PCA for face feature extraction, LDA for making class labels and FFNN for face recognition. Similarly we used the three more techniques namely LDA, KPCA and KFA for face feature extraction and then FFNN for face recognition.The proposed method is tested on the ORL database. Results involve the comparison of face recognition rate of the different feature extraction techniques with FFNN using 10, 20, 30 and 40 hidden neurons. The results on ORL database shows that FFNN with 30 hidden neurons performs best by extracting features using KPCA.
منابع مشابه
Face Recognition Using Gabor Wavelet Transform and Feed Forward Neural Network
In recent years, an explosion in research on pattern recognition systems using neural network methods has been observed. Face Recognition (FR) is a specialized pattern recognition task for several applications such as security: access to limited areas, banking: identity confirmation and identification of wanted people at airports. Biometric techniques deals with identifying individual with the ...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملFace Recognition by using Feed Forward Back Propagation Neural Network
Face recognition technology has seen dramatic improvements in performance over the past decade, and such systems are now widely used for security and commercial applications. In this paper an improved approach has been used in which feed forward back propagation neural network is implemented through matlab. The results obtained shows that the proposed approach somewhat improves the performance ...
متن کاملMinutiae Based Thermal Human Face Recognition using Label Connected Component Algorithm
In this paper, a thermal infra red face recognition system for human identification and verification using blood perfusion data and back propagation feed forward neural network is proposed. The system consists of three steps. At the very first step face region is cropped from the colour 24-bit input images. Secondly face features are extracted from the croped region, which will be taken as the ...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملFace Recognition System Based on Different Artificial Neural Networks Models and Training Algorithms
Face recognition is one of the biometric methods that is used to identify any given face image using the main features of this face. In this research, a face recognition system was suggested based on four Artificial Neural Network (ANN) models separately: feed forward backpropagation neural network (FFBPNN), cascade forward backpropagation neural network (CFBPNN), function fitting neural networ...
متن کامل