Erdős-turán Type Inequalities

نویسنده

  • LAURENŢIU PANAITOPOL
چکیده

Denoting by (rn)n≥1 the increasing sequence of the numbers p with p prime and α ≥ 2 integer, we prove that rn+1 − 2rn + rn−1 is positive for infinitely many values of n and negative also for infinitely many values of n. We prove similar properties for r n−rn−1rn+1 and 1 rn−1 − 2 rn + 1 rn+1 as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a conjecture of Erdős and Turán for additive basis

An old conjecture of Erdős and Turán states that the representation function of an additive basis of the positive integers can not be bounded. We survey some results related to this still wide open conjecture.

متن کامل

Turán Type Inequalities for General Bessel Functions

In this paper some Turán type inequalities for the general Bessel function, monotonicity and bounds for its logarithmic derivative are derived. Moreover we find the series representation and the relative extrema of the Turánian of general Bessel functions. The key tools in the proofs are the recurrence relations together with some asymptotic relations for Bessel functions.

متن کامل

Inequalities for Exponential Sums via Interpolation and Turán-Type Reverse Markov Inequalities

Interpolation was a topic in which Sharma was viewed as an almost uncontested world expert by his collaborators and many other colleagues. We survey recent results for exponential sums and linear combinations of shifted Gaussians which were obtained via interpolation. To illustrate the method exploiting the Pinkus-Smith Improvement Theorem for spans of Descartes systems, we present the proof of...

متن کامل

Turán Type Inequalities for Hypergeometric Functions

In this note our aim is to establish a Turán type inequality for Gaussian hypergeometric functions. This result completes the earlier result that G. Gasper proved for Jacobi polynomials. Moreover, at the end of this note we present some open problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003