The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications
نویسندگان
چکیده
The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks.
منابع مشابه
Evaluation of Biomass Production and Wastewater Nutrient Removal Using Microalgae: Sustainable Strategy to CO2 Bio-Fixation and Bioenergy Production Approach
Nowadays, the replacement of renewable energies such as biofuels is one of the main priorities in environmental programming and investments. This study is based on sustainable strategy towards integrating algal biomass generation as a green feedstock with wastewater treatment, CO2 bio-fixation, and bioenergy production. Therefore, the performance of Trichormus variabilis in ...
متن کاملSustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from Coal-Fired Power Generation
Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with an...
متن کاملPharmacological Potential of Ulva Species: A Valuable Resource
Ulva Linnaeus genus (Ulvaceae, Ulvales) is an ubiquitous genus widely distributed in oceans and estuaries. Currently, 128 species (accepted taxonomically) have been listed all around the world [1]. Individuals of this genus are characterized by a broad range of environmental tolerance, high growth rate and photosynthetic activity leading to a relatively abundant natural biomass. Aditionnaly, in...
متن کاملSocial sustainability assessment of conversion technologies: Municipal solid waste into bioenergy using Best Worst Method
The majority of sustainability assessments of the bio based industries are primarily focused on the environmental and economic aspects, while social impacts are rarely considered. While overlooking social dimension can have a serious harmful impact across supply chains. To address this issue, this study proposes a modified systemic approach for a social sustainability impact assessment of the te...
متن کاملبررسی توانایی جلبک salina Dunaliellaسویه Utex-200 در زدایش آلومینیوم از محیط
The effect of concentrations 0(control), 250, 500, 1000, 2000 and 4000 µM of aluminum on the growth rate and content total chlorophyll of Dunaliella salina strain UTEX-200 has been studied for duration of 27 days. The results indicated that an increase in aluminum concentration resulted in a decrease in the growth rate and chlorophyll content. It seems that these effects are probably due to des...
متن کامل