Using Naïve Bayes Classifier to Accelerate Constructing Fuzzy Intrusion Detection Systems
نویسنده
چکیده
453 AbstractA Bayesian classifier is one of the most widely used classifiers which possess several properties that make it surprisingly useful and accurate. It is illustrated that performance of Bayesian learning in some cases is comparable with neural networks and decision trees. Bayesian theorem suggests a straight forward process which is not based on search methods. This is the major point which satisfies the marvelous time complexity of Bayesian classifier. At the other hand, constructing phase of fuzzy intrusion detection systems suffer from time consuming processes which are based on search methods. In this paper we propose a novel method to accelerate such processes using Bayesian inference. Experimental results show meaningful time reduction.
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملNetwork Intrusion Detection Using a Hidden Naïve Bayes Binary Classifier
Using data mining techniques in intrusion detection systems is common for the classification of the network events as either normal events or attack events. Naïve Bayes (NB) method is a simple, efficient and popular data mining method that is built on conditional independence of attributes assumption. Hidden Naïve Bayes (HNB) is an extended form of NB that keeps the NB's simplicity and efficien...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملImproving Intrusion Detection by the Automated Generation of Detection Rules
Rule Based Detection Systems have been successful in preventing attacks on network resources, but suffer a problem in that they are not adaptable in cases where new attacks are made i.e. they need human intervention for investigating new attacks. This paper proposes the creation of a predictive intrusion detection model that is based on usage of classification techniques such as decision tree, ...
متن کاملAn Improved Techniques Based on Naive Bayesian for Attack Detection
With the enormous growth of computer networks and the huge increase in the number of applications that rely on it, network security is gaining increasing importance. Moreover, almost all computer systems suffer from security vulnerabilities which are both technically difficult and economically costly to be solved by the manufacturers. Therefore, the role of Intrusion Detection Systems (IDSs), a...
متن کامل