Influence of joint angular velocity on electrically evoked concentric force potentiation induced by stretch-shortening cycle in young adults
نویسندگان
چکیده
BACKGROUND During a stretch- shortening cycle (SSC), muscle force attained during concentric contractions (shortening phase) is potentiated by the preceding eccentric contractions (lengthening phase). The purpose of this study was to examine the influence of joint angular velocity on force potentiation induced by SSC (SSC effect). FINDINGS Twelve healthy men (age, 24.2 ± 3.2 years; height, 1.73 ± 0.05 m; body mass, 68.1 ± 11.0 kg) participated in this study. Ankle joint angle was passively moved by a dynamometer, with range of motion from dorsiflexion (DF) 15° to plantarflexion (PF) 15°. Muscle contractions were evoked by tetanic electrical stimulation. Joint angular velocity of concentric contraction was set at 30°/s and 150°/s. Magnitude of SSC effect was calculated as the ratio of joint torque obtained by concentric contraction with preliminary eccentric contraction trial relative to that obtained by concentric contraction without preliminary eccentric contraction trial. As a result, magnitude of SSC effect calculated at three joint angles was significantly larger in the 150°/s condition than in the 30°/s condition (p < 0.05). CONCLUSIONS These results indicate that the magnitude of SSC effect is affected by joint angular velocity, which is larger when joint angular velocity is larger. This phenomenon would be caused by insufficient duration to increase activation level in the large joint angular velocity condition. When the duration to increase activation level is insufficient due to short contraction duration, preactivation (one of the factors of SSC effect) leads to a significant increase in joint torque.
منابع مشابه
Factors of Force Potentiation Induced by Stretch-Shortening Cycle in Plantarflexors
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion f...
متن کاملBoth the elongation of attached crossbridges and residual force enhancement contribute to joint torque enhancement by the stretch-shortening cycle
This study examined the influence of the elongation of attached crossbridges and residual force enhancement on joint torque enhancement by the stretch-shortening cycle (SSC). Electrically evoked submaximal tetanic plantar flexions were adopted. Concentric contractions were evoked in the following three conditions: after 2 s isometric preactivation (ISO condition), after 1 s isometric then 1 s e...
متن کاملEffect of Preactivation on Torque Enhancement by the Stretch-Shortening Cycle in Knee Extensors
The stretch-shortening cycle is one of the most interesting topics in the field of sport sciences, because the performance of human movement is enhanced by the stretch-shortening cycle (eccentric contraction). The purpose of the present study was to examine whether the influence of preactivation on the torque enhancement by stretch-shortening cycle in knee extensors. Twelve men participated in ...
متن کاملStretch-shortening cycle: a powerful model to study normal and fatigued muscle.
Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given sh...
متن کاملThe role of series elastic structures in prestretch-induced work enhancement during isotonic and isokinetic contractions.
The influence of series elastic structures on the dynamics of the contractile machinery was examined in the gastrocnemius medialis (GM) of five male Wistar rats, with respect to enhancement of work of a muscle-tendon complex after active stretch. Imposed isotonic and isokinetic contractions were preceded by either an isometric phase (PI) or an active stretch (PS). The effects of fibre length di...
متن کامل